Abstract:Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
Abstract:Despite recent advances in multimodal large language models (MLLMs), their ability to understand and interact with music remains limited. Music understanding requires grounded reasoning over symbolic scores and expressive performance audio, which general-purpose MLLMs often fail to handle due to insufficient perceptual grounding. We introduce MuseAgent, a music-centric multimodal agent that augments language models with structured symbolic representations derived from sheet music images and performance audio. By integrating optical music recognition and automatic music transcription modules, MuseAgent enables multi-step reasoning and interaction over fine-grained musical content. To systematically evaluate music understanding capabilities, we further propose MuseBench, a benchmark covering music theory reasoning, score interpretation, and performance-level analysis across text, image, and audio modalities. Experiments show that existing MLLMs perform poorly on these tasks, while MuseAgent achieves substantial improvements, highlighting the importance of structured multimodal grounding for interactive music understanding.
Abstract:Low-cost inertial measurement units (IMUs) are widely utilized in mobile robot localization due to their affordability and ease of integration. However, their complex, nonlinear, and time-varying noise characteristics often lead to significant degradation in localization accuracy when applied directly for dead reckoning. To overcome this limitation, we propose a novel brain-inspired state estimation framework that combines a spiking neural network (SNN) with an invariant extended Kalman filter (InEKF). The SNN is designed to extract motion-related features from long sequences of IMU data affected by substantial random noise and is trained via a surrogate gradient descent algorithm to enable dynamic adaptation of the covariance noise parameter within the InEKF. By fusing the SNN output with raw IMU measurements, the proposed method enhances the robustness and accuracy of pose estimation. Extensive experiments conducted on the KITTI dataset and real-world data collected using a mobile robot equipped with a low-cost IMU demonstrate that the proposed approach outperforms state-of-the-art methods in localization accuracy and exhibits strong robustness to sensor noise, highlighting its potential for real-world mobile robot applications.
Abstract:Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to building clinical decision support systems. However, current MDT construction methods rely heavily on time-consuming and laborious manual annotation. To address this challenge, we propose PI-LoRA (Path-Integrated LoRA), a novel low-rank adaptation method for automatically extracting MDTs from clinical guidelines and textbooks. We integrate gradient path information to capture synergistic effects between different modules, enabling more effective and reliable rank allocation. This framework ensures that the most critical modules receive appropriate rank allocations while less important ones are pruned, resulting in a more efficient and accurate model for extracting medical decision trees from clinical texts. Extensive experiments on medical guideline datasets demonstrate that our PI-LoRA method significantly outperforms existing parameter-efficient fine-tuning approaches for the Text2MDT task, achieving better accuracy with substantially reduced model complexity. The proposed method achieves state-of-the-art results while maintaining a lightweight architecture, making it particularly suitable for clinical decision support systems where computational resources may be limited.
Abstract:Although large language models (LLMs) have revolutionized natural language processing capabilities, their practical implementation as autonomous multi-agent systems (MAS) for industrial problem-solving encounters persistent barriers. Conventional MAS architectures are fundamentally restricted by inflexible, hand-crafted graph topologies that lack contextual responsiveness, resulting in diminished efficacy across varied academic and commercial workloads. To surmount these constraints, we introduce AMAS, a paradigm-shifting framework that redefines LLM-based MAS through a novel dynamic graph designer. This component autonomously identifies task-specific optimal graph configurations via lightweight LLM adaptation, eliminating the reliance on monolithic, universally applied structural templates. Instead, AMAS exploits the intrinsic properties of individual inputs to intelligently direct query trajectories through task-optimized agent pathways. Rigorous validation across question answering, mathematical deduction, and code generation benchmarks confirms that AMAS systematically exceeds state-of-the-art single-agent and multi-agent approaches across diverse LLM architectures. Our investigation establishes that context-sensitive structural adaptability constitutes a foundational requirement for high-performance LLM MAS deployments.
Abstract:Large Language Models (LLMs) have transformed both everyday life and scientific research. However, adapting LLMs from general-purpose models to specialized tasks remains challenging, particularly in resource-constrained environments. Low-Rank Adaptation (LoRA), a prominent method within Parameter-Efficient Fine-Tuning (PEFT), has emerged as a promising approach to LLMs by approximating model weight updates using low-rank decomposition. However, LoRA is limited by its uniform rank ( r ) allocation to each incremental matrix, and existing rank allocation techniques aimed at addressing this issue remain computationally inefficient, complex, and unstable, hindering practical applications. To address these limitations, we propose Sensitivity-LoRA, an efficient fine-tuning method that dynamically allocates ranks to weight matrices based on both their global and local sensitivities. It leverages the second-order derivatives (Hessian Matrix) of the loss function to effectively capture weight sensitivity, enabling optimal rank allocation with minimal computational overhead. Our experimental results have demonstrated robust effectiveness, efficiency and stability of Sensitivity-LoRA across diverse tasks and benchmarks.
Abstract:Scientific research indicates that for every hour spent in direct patient care, physicians spend nearly two additional hours on administrative tasks, particularly on electronic health records (EHRs) and desk work. This excessive administrative burden not only reduces the time available for patient care but also contributes to physician burnout and inefficiencies in healthcare delivery. To address these challenges, this study introduces MediGen, a fine-tuned large language model (LLM) designed to automate the generation of medical reports from medical dialogues. By leveraging state-of-the-art methodologies for fine-tuning open-source pretrained models, including LLaMA3-8B, MediGen achieves high accuracy in transcribing and summarizing clinical interactions. The fine-tuned LLaMA3-8B model demonstrated promising results, achieving a ROUGE score of 58% and a BERTScore-F1 of 72%, indicating its effectiveness in generating accurate and clinically relevant medical reports. These findings suggest that MediGen has the potential to significantly reduce the administrative workload on physicians, improving both healthcare efficiency and physician well-being.