Abstract:With the rapid growth of Low Earth Orbit (LEO) satellite networks, satellite-IoT systems using the LoRa technique have been increasingly deployed to provide widespread Internet services to low-power and low-cost ground devices. However, the long transmission distance and adverse environments from IoT satellites to ground devices pose a huge challenge to link reliability, as evidenced by the measurement results based on our real-world setup. In this paper, we propose a blind coherent combining design named B2LoRa to boost LoRa transmission performance. The intuition behind B2LoRa is to leverage the repeated broadcasting mechanism inherent in satellite-IoT systems to achieve coherent combining under the low-power and low-cost constraints, where each re-transmission at different times is regarded as the same packet transmitted from different antenna elements within an antenna array. Then, the problem is translated into aligning these packets at a fine granularity despite the time, frequency, and phase offsets between packets in the case of frequent packet loss. To overcome this challenge, we present three designs - joint packet sniffing, frequency shift alignment, and phase drift mitigation to deal with ultra-low SNRs and Doppler shifts featured in satellite-IoT systems, respectively. Finally, experiment results based on our real-world deployments demonstrate the high efficiency of B2LoRa.
Abstract:As the field progresses toward Artificial General Intelligence (AGI), there is a pressing need for more comprehensive and insightful evaluation frameworks that go beyond aggregate performance metrics. This paper introduces a unified rating system that jointly models the difficulty of individual test cases and the competency of AI models (or humans) across vision, language, and action domains. Unlike existing metrics that focus solely on models, our approach allows for fine-grained, difficulty-aware evaluations through competitive interactions between models and tasks, capturing both the long-tail distribution of real-world challenges and the competency gap between current models and full task mastery. We validate the generalizability and robustness of our system through extensive experiments on multiple established datasets and models across distinct AGI domains. The resulting rating distributions offer novel perspectives and interpretable insights into task difficulty, model progression, and the outstanding challenges that remain on the path to achieving full AGI task mastery.
Abstract:An objective and accurate emotion diagnostic reference is vital to psychologists, especially when dealing with patients who are difficult to communicate with for pathological reasons. Nevertheless, current systems based on Electroencephalography (EEG) data utilized for sentiment discrimination have some problems, including excessive model complexity, mediocre accuracy, and limited interpretability. Consequently, we propose a novel and effective feature fusion mechanism named Mutual-Cross-Attention (MCA). Combining with a specially customized 3D Convolutional Neural Network (3D-CNN), this purely mathematical mechanism adeptly discovers the complementary relationship between time-domain and frequency-domain features in EEG data. Furthermore, the new designed Channel-PSD-DE 3D feature also contributes to the high performance. The proposed method eventually achieves 99.49% (valence) and 99.30% (arousal) accuracy on DEAP dataset.