refer to the report for detailed contributions
Abstract:This paper presents a flexible thin-film underwater transducer based on a mesoporous PVDF membrane embedded with piezoelectrical-actuated microdomes. To enhance piezoelectric performance, ZnO nanoparticles were used as a sacrificial template to fabricate a sponge-like PVDF structure with increased \b{eta}-phase content and improved mechanical compliance. The device was modeled using finite element analysis and optimized through parametric studies of dome geometry, film thickness, and dome size. Acoustic performance was evaluated through underwater testing, demonstrating high SPL output and reliable data transmission even at low drive voltages. The proposed transducer offers a lightweight, low-cost, and energy-efficient solution for short-range underwater communication in next-generation Ocean IoT systems.
Abstract:This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes. The challenge focuses on generating natural, realistic outputs while maintaining identity consistency. Its goal is to advance state-of-the-art solutions for perceptual quality and realism, without imposing constraints on computational resources or training data. The track of the challenge evaluates performance using a weighted image quality assessment (IQA) score and employs the AdaFace model as an identity checker. The competition attracted 141 registrants, with 13 teams submitting valid models, and ultimately, 10 teams achieved a valid score in the final ranking. This collaborative effort advances the performance of real-world face restoration while offering an in-depth overview of the latest trends in the field.
Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
Abstract:The design of target-specific molecules such as small molecules, peptides, and antibodies is vital for biological research and drug discovery. Existing generative methods are restricted to single-domain molecules, failing to address versatile therapeutic needs or utilize cross-domain transferability to enhance model performance. In this paper, we introduce Unified generative Modeling of 3D Molecules (UniMoMo), the first framework capable of designing binders of multiple molecular domains using a single model. In particular, UniMoMo unifies the representations of different molecules as graphs of blocks, where each block corresponds to either a standard amino acid or a molecular fragment. Based on these unified representations, UniMoMo utilizes a geometric latent diffusion model for 3D molecular generation, featuring an iterative full-atom autoencoder to compress blocks into latent space points, followed by an E(3)-equivariant diffusion process. Extensive benchmarks across peptides, antibodies, and small molecules demonstrate the superiority of our unified framework over existing domain-specific models, highlighting the benefits of multi-domain training.
Abstract:Recent advances in LiDAR 3D detection have demonstrated the effectiveness of Transformer-based frameworks in capturing the global dependencies from point cloud spaces, which serialize the 3D voxels into the flattened 1D sequence for iterative self-attention. However, the spatial structure of 3D voxels will be inevitably destroyed during the serialization process. Besides, due to the considerable number of 3D voxels and quadratic complexity of Transformers, multiple sequences are grouped before feeding to Transformers, leading to a limited receptive field. Inspired by the impressive performance of State Space Models (SSM) achieved in the field of 2D vision tasks, in this paper, we propose a novel Unified Mamba (UniMamba), which seamlessly integrates the merits of 3D convolution and SSM in a concise multi-head manner, aiming to perform "local and global" spatial context aggregation efficiently and simultaneously. Specifically, a UniMamba block is designed which mainly consists of spatial locality modeling, complementary Z-order serialization and local-global sequential aggregator. The spatial locality modeling module integrates 3D submanifold convolution to capture the dynamic spatial position embedding before serialization. Then the efficient Z-order curve is adopted for serialization both horizontally and vertically. Furthermore, the local-global sequential aggregator adopts the channel grouping strategy to efficiently encode both "local and global" spatial inter-dependencies using multi-head SSM. Additionally, an encoder-decoder architecture with stacked UniMamba blocks is formed to facilitate multi-scale spatial learning hierarchically. Extensive experiments are conducted on three popular datasets: nuScenes, Waymo and Argoverse 2. Particularly, our UniMamba achieves 70.2 mAP on the nuScenes dataset.
Abstract:Low-bit model quantization for image super-resolution (SR) is a longstanding task that is renowned for its surprising compression and acceleration ability. However, accuracy degradation is inevitable when compressing the full-precision (FP) model to ultra-low bit widths (2~4 bits). Experimentally, we observe that the degradation of quantization is mainly attributed to the quantization of activation instead of model weights. In numerical analysis, the condition number of weights could measure how much the output value can change for a small change in the input argument, inherently reflecting the quantization error. Therefore, we propose CondiQuant, a condition number based low-bit post-training quantization for image super-resolution. Specifically, we formulate the quantization error as the condition number of weight metrics. By decoupling the representation ability and the quantization sensitivity, we design an efficient proximal gradient descent algorithm to iteratively minimize the condition number and maintain the output still. With comprehensive experiments, we demonstrate that CondiQuant outperforms existing state-of-the-art post-training quantization methods in accuracy without computation overhead and gains the theoretically optimal compression ratio in model parameters. Our code and model are released at https://github.com/Kai-Liu001/CondiQuant.
Abstract:Augmented reality assembly guidance is essential for intelligent manufacturing and medical applications, requiring continuous measurement of the 6DoF poses of manipulated objects. Although current tracking methods have made significant advancements in accuracy and efficiency, they still face challenges in robustness when dealing with cluttered backgrounds, rotationally symmetric objects, and noisy sequences. In this paper, we first propose a robust contour-based pose tracking method that addresses error-prone contour correspondences and improves noise tolerance. It utilizes a fan-shaped search strategy to refine correspondences and models local contour shape and noise uncertainty as mixed probability distribution, resulting in a highly robust contour energy function. Secondly, we introduce a CPU-only strategy to better track rotationally symmetric objects and assist the contour-based method in overcoming local minima by exploring sparse interior correspondences. This is achieved by pre-sampling interior points from sparse viewpoint templates offline and using the DIS optical flow algorithm to compute their correspondences during tracking. Finally, we formulate a unified energy function to fuse contour and interior information, which is solvable using a re-weighted least squares algorithm. Experiments on public datasets and real scenarios demonstrate that our method significantly outperforms state-of-the-art monocular tracking methods and can achieve more than 100 FPS using only a CPU.
Abstract:In hours-long meeting scenarios, real-time speech stream often struggles with achieving accurate speaker diarization, commonly leading to speaker identification and speaker count errors. To address this challenge, we propose SCDiar, a system that operates on speech segments, split at the token level by a speaker change detection (SCD) module. Building on these segments, we introduce several enhancements to efficiently select the best available segment for each speaker. These improvements lead to significant gains across various benchmarks. Notably, on real-world meeting data involving more than ten participants, SCDiar outperforms previous systems by up to 53.6\% in accuracy, substantially narrowing the performance gap between online and offline systems.
Abstract:We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2