We propose Hyper-Dimensional Function Encoding (HDFE). Given samples of a continuous object (e.g. a function), HDFE produces an explicit vector representation of the given object, invariant to the sample distribution and density. Sample distribution and density invariance enables HDFE to consistently encode continuous objects regardless of their sampling, and therefore allows neural networks to receive continuous objects as inputs for machine learning tasks, such as classification and regression. Besides, HDFE does not require any training and is proved to map the object into an organized embedding space, which facilitates the training of the downstream tasks. In addition, the encoding is decodable, which enables neural networks to regress continuous objects by regressing their encodings. Therefore, HDFE serves as an interface for processing continuous objects. We apply HDFE to function-to-function mapping, where vanilla HDFE achieves competitive performance as the state-of-the-art algorithm. We apply HDFE to point cloud surface normal estimation, where a simple replacement from PointNet to HDFE leads to immediate 12% and 15% error reductions in two benchmarks. In addition, by integrating HDFE into the PointNet-based SOTA network, we improve the SOTA baseline by 2.5% and 1.7% in the same benchmarks.
Language models (LMs) have gained great achievement in various NLP tasks for both fine-tuning and in-context learning (ICL) methods. Despite its outstanding performance, evidence shows that spurious correlations caused by imbalanced label distributions in training data (or exemplars in ICL) lead to robustness issues. However, previous studies mostly focus on word- and phrase-level features and fail to tackle it from the concept level, partly due to the lack of concept labels and subtle and diverse expressions of concepts in text. In this paper, we first use the LLM to label the concept for each text and then measure the concept bias of models for fine-tuning or ICL on the test data. Second, we propose a data rebalancing method to mitigate the spurious correlations by adding the LLM-generated counterfactual data to make a balanced label distribution for each concept. We verify the effectiveness of our mitigation method and show its superiority over the token removal method. Overall, our results show that there exist label distribution biases in concepts across multiple text classification datasets, and LMs will utilize these shortcuts to make predictions in both fine-tuning and ICL methods.
Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations.
Representation learning assumes that real-world data is generated by a few semantically meaningful generative factors (i.e., sources of variation) and aims to discover them in the latent space. These factors are expected to be causally disentangled, meaning that distinct factors are encoded into separate latent variables, and changes in one factor will not affect the values of the others. Compared to statistical independence, causal disentanglement allows more controllable data generation, improved robustness, and better generalization. However, most existing work assumes unconfoundedness in the discovery process, that there are no common causes to the generative factors and thus obtain only statistical independence. In this paper, we recognize the importance of modeling confounders in discovering causal generative factors. Unfortunately, such factors are not identifiable without proper inductive bias. We fill the gap by introducing a framework entitled Confounded-Disentanglement (C-Disentanglement), the first framework that explicitly introduces the inductive bias of confounder via labels from domain expertise. In addition, we accordingly propose an approach to sufficiently identify the causally disentangled factors under any inductive bias of the confounder. We conduct extensive experiments on both synthetic and real-world datasets. Our method demonstrates competitive results compared to various SOTA baselines in obtaining causally disentangled features and downstream tasks under domain shifts.
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses. However, despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs such as spreading misinformation, generating fake news, plagiarism in academia, and contaminating the web. To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text. The basic idea is that whenever we can tell if the given text is either written by a human or an AI, we can utilize this information to address the above-mentioned concerns. To that end, a plethora of detection frameworks have been proposed, highlighting the possibilities of AI-generated text detection. But in parallel to the development of detection frameworks, researchers have also concentrated on designing strategies to elude detection, i.e., focusing on the impossibilities of AI-generated text detection. This is a crucial step in order to make sure the detection frameworks are robust enough and it is not too easy to fool a detector. Despite the huge interest and the flurry of research in this domain, the community currently lacks a comprehensive analysis of recent developments. In this survey, we aim to provide a concise categorization and overview of current work encompassing both the prospects and the limitations of AI-generated text detection. To enrich the collective knowledge, we engage in an exhaustive discussion on critical and challenging open questions related to ongoing research on AI-generated text detection.
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks. Recent work suggests that patching LLMs against these attacks is possible: manual jailbreak attacks are human-readable but often limited and public, making them easy to block; adversarial attacks generate gibberish prompts that can be detected using perplexity-based filters. In this paper, we show that these solutions may be too optimistic. We propose an interpretable adversarial attack, \texttt{AutoDAN}, that combines the strengths of both types of attacks. It automatically generates attack prompts that bypass perplexity-based filters while maintaining a high attack success rate like manual jailbreak attacks. These prompts are interpretable and diverse, exhibiting strategies commonly used in manual jailbreak attacks, and transfer better than their non-readable counterparts when using limited training data or a single proxy model. We also customize \texttt{AutoDAN}'s objective to leak system prompts, another jailbreak application not addressed in the adversarial attack literature. %, demonstrating the versatility of the approach. We can also customize the objective of \texttt{AutoDAN} to leak system prompts, beyond the ability to elicit harmful content from the model, demonstrating the versatility of the approach. Our work provides a new way to red-team LLMs and to understand the mechanism of jailbreak attacks.
Edge device participation in federating learning (FL) has been typically studied under the lens of device-server communication (e.g., device dropout) and assumes an undying desire from edge devices to participate in FL. As a result, current FL frameworks are flawed when implemented in real-world settings, with many encountering the free-rider problem. In a step to push FL towards realistic settings, we propose RealFM: the first truly federated mechanism which (1) realistically models device utility, (2) incentivizes data contribution and device participation, and (3) provably removes the free-rider phenomena. RealFM does not require data sharing and allows for a non-linear relationship between model accuracy and utility, which improves the utility gained by the server and participating devices compared to non-participating devices as well as devices participating in other FL mechanisms. On real-world data, RealFM improves device and server utility, as well as data contribution, by up to 3 magnitudes and 7x respectively compared to baseline mechanisms.
Assistant AI agents should be capable of rapidly acquiring novel skills and adapting to new user preferences. Traditional frameworks like imitation learning and reinforcement learning do not facilitate this capability because they support only low-level, inefficient forms of communication. In contrast, humans communicate with progressive efficiency by defining and sharing abstract intentions. Reproducing similar capability in AI agents, we develop a novel learning framework named Communication-Efficient Interactive Learning (CEIL). By equipping a learning agent with an abstract, dynamic language and an intrinsic motivation to learn with minimal communication effort, CEIL leads to emergence of a human-like pattern where the learner and the teacher communicate progressively efficiently by exchanging increasingly more abstract intentions. CEIL demonstrates impressive performance and communication efficiency on a 2D MineCraft domain featuring long-horizon decision-making tasks. Agents trained with CEIL quickly master new tasks, outperforming non-hierarchical and hierarchical imitation learning by up to 50% and 20% in absolute success rate, respectively, given the same number of interactions with the teacher. Especially, the framework performs robustly with teachers modeled after human pragmatic communication behavior.
Multi-agent reinforcement learning (MARL) plays a pivotal role in tackling real-world challenges. However, the seamless transition of trained policies from simulations to real-world requires it to be robust to various environmental uncertainties. Existing works focus on finding Nash Equilibrium or the optimal policy under uncertainty in one environment variable (i.e. action, state or reward). This is because a multi-agent system itself is highly complex and unstationary. However, in real-world situation uncertainty can occur in multiple environment variables simultaneously. This work is the first to formulate the generalised problem of robustness to multi-modal environment uncertainty in MARL. To this end, we propose a general robust training approach for multi-modal uncertainty based on curriculum learning techniques. We handle two distinct environmental uncertainty simultaneously and present extensive results across both cooperative and competitive MARL environments, demonstrating that our approach achieves state-of-the-art levels of robustness.