National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Abstract:Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
Abstract:Aligning text-to-image (T2I) diffusion models with Direct Preference Optimization (DPO) has shown notable improvements in generation quality. However, applying DPO to T2I faces two challenges: the sensitivity of DPO to preference pairs and the labor-intensive process of collecting and annotating high-quality data. In this work, we demonstrate that preference pairs with marginal differences can degrade DPO performance. Since DPO relies exclusively on relative ranking while disregarding the absolute difference of pairs, it may misclassify losing samples as wins, or vice versa. We empirically show that extending the DPO from pairwise to groupwise and incorporating reward standardization for reweighting leads to performance gains without explicit data selection. Furthermore, we propose Group Preference Optimization (GPO), an effective self-improvement method that enhances performance by leveraging the model's own capabilities without requiring external data. Extensive experiments demonstrate that GPO is effective across various diffusion models and tasks. Specifically, combining with widely used computer vision models, such as YOLO and OCR, the GPO improves the accurate counting and text rendering capabilities of the Stable Diffusion 3.5 Medium by 20 percentage points. Notably, as a plug-and-play method, no extra overhead is introduced during inference.
Abstract:Federated Learning (FL) enables collaborative model training without sharing raw data, preserving participant privacy. Decentralized FL (DFL) eliminates reliance on a central server, mitigating the single point of failure inherent in the traditional FL paradigm, while introducing deployment challenges on resource-constrained devices. To evaluate real-world applicability, this work designs and deploys a physical testbed using edge devices such as Raspberry Pi and Jetson Nano. The testbed is built upon a DFL training platform, NEBULA, and extends it with a power monitoring module to measure energy consumption during training. Experiments across multiple datasets show that model performance is influenced by the communication topology, with denser topologies leading to better outcomes in DFL settings.
Abstract:Traditional machine learning (ML) raises serious privacy concerns, while federated learning (FL) mitigates the risk of data leakage by keeping data on local devices. However, the training process of FL can still leak sensitive information, which adversaries may exploit to infer private data. One of the most prominent threats is the membership inference attack (MIA), where the adversary aims to determine whether a particular data record was part of the training set. This paper addresses this problem through a two-stage defense called AugMixCloak. The core idea is to apply data augmentation and principal component analysis (PCA)-based information fusion to query images, which are detected by perceptual hashing (pHash) as either identical to or highly similar to images in the training set. Experimental results show that AugMixCloak successfully defends against both binary classifier-based MIA and metric-based MIA across five datasets and various decentralized FL (DFL) topologies. Compared with regularization-based defenses, AugMixCloak demonstrates stronger protection. Compared with confidence score masking, AugMixCloak exhibits better generalization.
Abstract:In this paper, we present an effective method to enhance visual reasoning with significantly fewer training samples, relying purely on self-improvement with no knowledge distillation. Our key insight is that the difficulty of training data during reinforcement fine-tuning (RFT) is critical. Appropriately challenging samples can substantially boost reasoning capabilities even when the dataset is small. Despite being intuitive, the main challenge remains in accurately quantifying sample difficulty to enable effective data filtering. To this end, we propose a novel way of repurposing Monte Carlo Tree Search (MCTS) to achieve that. Starting from our curated 70k open-source training samples, we introduce an MCTS-based selection method that quantifies sample difficulty based on the number of iterations required by the VLMs to solve each problem. This explicit step-by-step reasoning in MCTS enforces the model to think longer and better identifies samples that are genuinely challenging. We filter and retain 11k samples to perform RFT on Qwen2.5-VL-7B-Instruct, resulting in our final model, ThinkLite-VL. Evaluation results on eight benchmarks show that ThinkLite-VL improves the average performance of Qwen2.5-VL-7B-Instruct by 7%, using only 11k training samples with no knowledge distillation. This significantly outperforms all existing 7B-level reasoning VLMs, and our fairly comparable baselines that use classic selection methods such as accuracy-based filtering. Notably, on MathVista, ThinkLite-VL-7B achieves the SoTA accuracy of 75.1, surpassing Qwen2.5-VL-72B, GPT-4o, and O1. Our code, data, and model are available at https://github.com/si0wang/ThinkLite-VL.
Abstract:Federated learning (FL) has garnered significant attention as a prominent privacy-preserving Machine Learning (ML) paradigm. Decentralized FL (DFL) eschews traditional FL's centralized server architecture, enhancing the system's robustness and scalability. However, these advantages of DFL also create new vulnerabilities for malicious participants to execute adversarial attacks, especially model poisoning attacks. In model poisoning attacks, malicious participants aim to diminish the performance of benign models by creating and disseminating the compromised model. Existing research on model poisoning attacks has predominantly concentrated on undermining global models within the Centralized FL (CFL) paradigm, while there needs to be more research in DFL. To fill the research gap, this paper proposes an innovative model poisoning attack called DMPA. This attack calculates the differential characteristics of multiple malicious client models and obtains the most effective poisoning strategy, thereby orchestrating a collusive attack by multiple participants. The effectiveness of this attack is validated across multiple datasets, with results indicating that the DMPA approach consistently surpasses existing state-of-the-art FL model poisoning attack strategies.
Abstract:Decentralized Federated Learning (DFL) enables collaborative, privacy-preserving model training without relying on a central server. This decentralized approach reduces bottlenecks and eliminates single points of failure, enhancing scalability and resilience. However, DFL also introduces challenges such as suboptimal models with non-IID data distributions, increased communication overhead, and resource usage. Thus, this work proposes S-VOTE, a voting-based client selection mechanism that optimizes resource usage and enhances model performance in federations with non-IID data conditions. S-VOTE considers an adaptive strategy for spontaneous local training that addresses participation imbalance, allowing underutilized clients to contribute without significantly increasing resource costs. Extensive experiments on benchmark datasets demonstrate the S-VOTE effectiveness. More in detail, it achieves lower communication costs by up to 21%, 4-6% faster convergence, and improves local performance by 9-17% compared to baseline methods in some configurations, all while achieving a 14-24% energy consumption reduction. These results highlight the potential of S-VOTE to address DFL challenges in heterogeneous environments.
Abstract:We show that the GPS tags contained in photo metadata provide a useful control signal for image generation. We train GPS-to-image models and use them for tasks that require a fine-grained understanding of how images vary within a city. In particular, we train a diffusion model to generate images conditioned on both GPS and text. The learned model generates images that capture the distinctive appearance of different neighborhoods, parks, and landmarks. We also extract 3D models from 2D GPS-to-image models through score distillation sampling, using GPS conditioning to constrain the appearance of the reconstruction from each viewpoint. Our evaluations suggest that our GPS-conditioned models successfully learn to generate images that vary based on location, and that GPS conditioning improves estimated 3D structure.
Abstract:The integration of Federated Learning (FL) and Multi-Task Learning (MTL) has been explored to address client heterogeneity, with Federated Multi-Task Learning (FMTL) treating each client as a distinct task. However, most existing research focuses on data heterogeneity (e.g., addressing non-IID data) rather than task heterogeneity, where clients solve fundamentally different tasks. Additionally, much of the work relies on centralized settings with a server managing the federation, leaving the more challenging domain of decentralized FMTL largely unexplored. Thus, this work bridges this gap by proposing ColNet, a framework designed for heterogeneous tasks in decentralized federated environments. ColNet divides models into the backbone and task-specific layers, forming groups of similar clients, with group leaders performing conflict-averse cross-group aggregation. A pool of experiments with different federations demonstrated ColNet outperforms the compared aggregation schemes in decentralized settings with label and task heterogeneity scenarios.
Abstract:In this paper, we introduce SAIL-VL (ScAlable Vision Language Model TraIning via High QuaLity Data Curation), an open-source vision language model (VLM) of state-of-the-art (SOTA) performance with 2B parameters. We introduce three key improvements that contribute to SAIL-VL's leading performance: (1) Scalable high-quality visual understanding data construction: We implement a visual understanding data construction pipeline, which enables hundred-million-scale high-quality recaption data annotation. Equipped with this pipeline, we curate SAIL-Caption, a large-scale caption dataset with large quantity and the highest data quality compared with opensource caption datasets. (2) Scalable Pretraining with High-Quality Visual Understanding Data: We scale SAIL-VL's pretraining budget up to 131B tokens and show that even a 2B VLM benefits from scaled up training data sizes, exhibiting expected data size scaling laws in visual understanding and instruction following performance. (3) Scalable SFT via quantity and quality scaling: We introduce general guidance for instruction data curation to scale up instruction data continuously, allowing us to construct a large SFT dataset with the highest quality. To further improve SAIL-VL's performance, we propose quality scaling, a multi-stage training recipe with curriculum learning, to improve model performance scaling curves w.r.t. data sizes from logarithmic to be near-linear. SAIL-VL obtains the highest average score in 19 commonly used benchmarks in our evaluation and achieves top1 performance among VLMs of comparable sizes on OpenCompass (https://rank.opencompass.org.cn/leaderboard-multimodal). We release our SAIL-VL-2B model at HuggingFace (https://huggingface.co/BytedanceDouyinContent/SAIL-VL-2B).