Alert button
Picture for Hal Daumé III

Hal Daumé III

Alert button

Toxicity Detection is NOT all you Need: Measuring the Gaps to Supporting Volunteer Content Moderators

Nov 14, 2023
Yang Trista Cao, Lovely-Frances Domingo, Sarah Ann Gilbert, Michelle Mazurek, Katie Shilton, Hal Daumé III

Extensive efforts in automated approaches for content moderation have been focused on developing models to identify toxic, offensive, and hateful content -- with the aim of lightening the load for moderators. Yet, it remains uncertain whether improvements on those tasks truly address the needs that moderators have in accomplishing their work. In this paper, we surface the gaps between past research efforts that have aimed to provide automation for aspects of the content moderation task, and the needs of volunteer content moderators. To do so, we conduct a model review on Hugging Face to reveal the availability of models to cover various moderation rules and guidelines. We further put state-of-the-art LLMs to the test (GPT-4 and Llama-2), evaluating how well these models perform in flagging violations of platform rules. Overall, we observe a non-trivial gap, as missing developed models and LLMs exhibit low recall on a significant portion of the rules.

Viaarxiv icon

DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization

Oct 30, 2023
Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo, Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, Huazhe Xu

Figure 1 for DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
Figure 2 for DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
Figure 3 for DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
Figure 4 for DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization

Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations.

Viaarxiv icon

Hallucination Detection for Grounded Instruction Generation

Oct 23, 2023
Lingjun Zhao, Khanh Nguyen, Hal Daumé III

We investigate the problem of generating instructions to guide humans to navigate in simulated residential environments. A major issue with current models is hallucination: they generate references to actions or objects that are inconsistent with what a human follower would perform or encounter along the described path. We develop a model that detects these hallucinated references by adopting a model pre-trained on a large corpus of image-text pairs, and fine-tuning it with a contrastive loss that separates correct instructions from instructions containing synthesized hallucinations. Our final model outperforms several baselines, including using word probability estimated by the instruction-generation model, and supervised models based on LSTM and Transformer.

Viaarxiv icon

Towards Conceptualization of "Fair Explanation": Disparate Impacts of anti-Asian Hate Speech Explanations on Content Moderators

Oct 23, 2023
Tin Nguyen, Jiannan Xu, Aayushi Roy, Hal Daumé III, Marine Carpuat

Recent research at the intersection of AI explainability and fairness has focused on how explanations can improve human-plus-AI task performance as assessed by fairness measures. We propose to characterize what constitutes an explanation that is itself "fair" -- an explanation that does not adversely impact specific populations. We formulate a novel evaluation method of "fair explanations" using not just accuracy and label time, but also psychological impact of explanations on different user groups across many metrics (mental discomfort, stereotype activation, and perceived workload). We apply this method in the context of content moderation of potential hate speech, and its differential impact on Asian vs. non-Asian proxy moderators, across explanation approaches (saliency map and counterfactual explanation). We find that saliency maps generally perform better and show less evidence of disparate impact (group) and individual unfairness than counterfactual explanations. Content warning: This paper contains examples of hate speech and racially discriminatory language. The authors do not support such content. Please consider your risk of discomfort carefully before continuing reading!

* EMNLP 2023 Main Conference (Long Paper) 
Viaarxiv icon

Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong

Oct 19, 2023
Chenglei Si, Navita Goyal, Sherry Tongshuang Wu, Chen Zhao, Shi Feng, Hal Daumé III, Jordan Boyd-Graber

Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they're getting, LLMs should not only provide but also help users fact-check information. In this paper, we conduct experiments with 80 crowdworkers in total to compare language models with search engines (information retrieval systems) at facilitating fact-checking by human users. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than using search engines with similar accuracy. However, they tend to over-rely the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. However, showing both search engine results and LLM explanations offers no complementary benefits as compared to search engines alone. Taken together, natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages yet, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences.

* preprint 
Viaarxiv icon

Progressively Efficient Learning

Oct 13, 2023
Ruijie Zheng, Khanh Nguyen, Hal Daumé III, Furong Huang, Karthik Narasimhan

Assistant AI agents should be capable of rapidly acquiring novel skills and adapting to new user preferences. Traditional frameworks like imitation learning and reinforcement learning do not facilitate this capability because they support only low-level, inefficient forms of communication. In contrast, humans communicate with progressive efficiency by defining and sharing abstract intentions. Reproducing similar capability in AI agents, we develop a novel learning framework named Communication-Efficient Interactive Learning (CEIL). By equipping a learning agent with an abstract, dynamic language and an intrinsic motivation to learn with minimal communication effort, CEIL leads to emergence of a human-like pattern where the learner and the teacher communicate progressively efficiently by exchanging increasingly more abstract intentions. CEIL demonstrates impressive performance and communication efficiency on a 2D MineCraft domain featuring long-horizon decision-making tasks. Agents trained with CEIL quickly master new tasks, outperforming non-hierarchical and hierarchical imitation learning by up to 50% and 20% in absolute success rate, respectively, given the same number of interactions with the teacher. Especially, the framework performs robustly with teachers modeled after human pragmatic communication behavior.

Viaarxiv icon

The Impact of Explanations on Fairness in Human-AI Decision-Making: Protected vs Proxy Features

Oct 12, 2023
Navita Goyal, Connor Baumler, Tin Nguyen, Hal Daumé III

AI systems have been known to amplify biases in real world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants' perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments -- explanations, model bias disclosure and proxy correlation disclosure -- affect fairness perception and parity. We find that explanations help people detect direct biases but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and the decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making.

Viaarxiv icon

TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning

Jun 22, 2023
Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, Furong Huang

Figure 1 for TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Figure 2 for TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Figure 3 for TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Figure 4 for TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning

Despite recent progress in reinforcement learning (RL) from raw pixel data, sample inefficiency continues to present a substantial obstacle. Prior works have attempted to address this challenge by creating self-supervised auxiliary tasks, aiming to enrich the agent's learned representations with control-relevant information for future state prediction. However, these objectives are often insufficient to learn representations that can represent the optimal policy or value function, and they often consider tasks with small, abstract discrete action spaces and thus overlook the importance of action representation learning in continuous control. In this paper, we introduce TACO: Temporal Action-driven Contrastive Learning, a simple yet powerful temporal contrastive learning approach that facilitates the concurrent acquisition of latent state and action representations for agents. TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states paired with action sequences and representations of the corresponding future states. Theoretically, TACO can be shown to learn state and action representations that encompass sufficient information for control, thereby improving sample efficiency. For online RL, TACO achieves 40% performance boost after one million environment interaction steps on average across nine challenging visual continuous control tasks from Deepmind Control Suite. In addition, we show that TACO can also serve as a plug-and-play module adding to existing offline visual RL methods to establish the new state-of-the-art performance for offline visual RL across offline datasets with varying quality.

Viaarxiv icon

Evaluating the Social Impact of Generative AI Systems in Systems and Society

Jun 12, 2023
Irene Solaiman, Zeerak Talat, William Agnew, Lama Ahmad, Dylan Baker, Su Lin Blodgett, Hal Daumé III, Jesse Dodge, Ellie Evans, Sara Hooker, Yacine Jernite, Alexandra Sasha Luccioni, Alberto Lusoli, Margaret Mitchell, Jessica Newman, Marie-Therese Png, Andrew Strait, Apostol Vassilev

Generative AI systems across modalities, ranging from text, image, audio, and video, have broad social impacts, but there exists no official standard for means of evaluating those impacts and which impacts should be evaluated. We move toward a standard approach in evaluating a generative AI system for any modality, in two overarching categories: what is able to be evaluated in a base system that has no predetermined application and what is able to be evaluated in society. We describe specific social impact categories and how to approach and conduct evaluations in the base technical system, then in people and society. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to all modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what is able to be evaluated in society, each with their own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm. We are concurrently crafting an evaluation repository for the AI research community to contribute existing evaluations along the given categories. This version will be updated following a CRAFT session at ACM FAccT 2023.

Viaarxiv icon

What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on AI Systems

May 23, 2023
Navita Goyal, Eleftheria Briakou, Amanda Liu, Connor Baumler, Claire Bonial, Jeffrey Micher, Clare R. Voss, Marine Carpuat, Hal Daumé III

Figure 1 for What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on AI Systems
Figure 2 for What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on AI Systems
Figure 3 for What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on AI Systems
Figure 4 for What Else Do I Need to Know? The Effect of Background Information on Users' Reliance on AI Systems

AI systems have shown impressive performance at answering questions by retrieving relevant context. However, with the increasingly large models, it is impossible and often undesirable to constrain models' knowledge or reasoning to only the retrieved context. This leads to a mismatch between the information that these models access to derive the answer and the information available to the user consuming the AI predictions to assess the AI predicted answer. In this work, we study how users interact with AI systems in absence of sufficient information to assess AI predictions. Further, we ask the question of whether adding the requisite background alleviates the concerns around over-reliance in AI predictions. Our study reveals that users rely on AI predictions even in the absence of sufficient information needed to assess its correctness. Providing the relevant background, however, helps users catch AI errors better, reducing over-reliance on incorrect AI predictions. On the flip side, background information also increases users' confidence in their correct as well as incorrect judgments. Contrary to common expectation, aiding a user's perusal of the context and the background through highlights is not helpful in alleviating the issue of over-confidence stemming from availability of more information. Our work aims to highlight the gap between how NLP developers perceive informational need in human-AI interaction and the actual human interaction with the information available to them.

* 12 pages 
Viaarxiv icon