Abstract:Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed way to conceptualize and evaluate Effort-aware Fairness (EaF) based on the concept of Force, or temporal trajectory of predictive features coupled with inertia. In addition to our theoretical formulation of EaF metrics, our empirical contributions include: 1/ a pre-registered human subjects experiment, which demonstrates that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; 2/ pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who spent significant efforts to improve but are still stuck with systemic/early-life disadvantages outside their control.
Abstract:Despite its U.S. constitutional foundation, the technical ``individual fairness'' criterion has not been operationalized in state or federal statutes/regulations. We conduct a human subjects experiment to address this gap, evaluating which demographic features are relevant for individual fairness evaluation of recidivism risk assessment (RRA) tools. Our analyses conclude that the individual similarity function should consider age and sex, but it should ignore race.
Abstract:Recent research at the intersection of AI explainability and fairness has focused on how explanations can improve human-plus-AI task performance as assessed by fairness measures. We propose to characterize what constitutes an explanation that is itself "fair" -- an explanation that does not adversely impact specific populations. We formulate a novel evaluation method of "fair explanations" using not just accuracy and label time, but also psychological impact of explanations on different user groups across many metrics (mental discomfort, stereotype activation, and perceived workload). We apply this method in the context of content moderation of potential hate speech, and its differential impact on Asian vs. non-Asian proxy moderators, across explanation approaches (saliency map and counterfactual explanation). We find that saliency maps generally perform better and show less evidence of disparate impact (group) and individual unfairness than counterfactual explanations. Content warning: This paper contains examples of hate speech and racially discriminatory language. The authors do not support such content. Please consider your risk of discomfort carefully before continuing reading!