Abstract:Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Since the early 2010s, ABSA has achieved extraordinarily high accuracy with various deep neural models. However, existing ABSA models with strong in-house performances may fail to generalize to some challenging cases where the contexts are variable, i.e., low robustness to real-world environments. In this study, we propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training. First, we strengthen the current best-robust syntax-aware models by further incorporating the rich external syntactic dependencies and the labels with aspect simultaneously with a universal-syntax graph convolutional network. In the corpus perspective, we propose to automatically induce high-quality synthetic training data with various types, allowing models to learn sufficient inductive bias for better robustness. Last, we based on the rich pseudo data perform adversarial training to enhance the resistance to the context perturbation and meanwhile employ contrastive learning to reinforce the representations of instances with contrastive sentiments. Extensive robustness evaluations are conducted. The results demonstrate that our enhanced syntax-aware model achieves better robustness performances than all the state-of-the-art baselines. By additionally incorporating our synthetic corpus, the robust testing results are pushed with around 10% accuracy, which are then further improved by installing the advanced training strategies. In-depth analyses are presented for revealing the factors influencing the ABSA robustness.
Abstract:Mainstream solutions to Sequential Recommendation (SR) represent items with fixed vectors. These vectors have limited capability in capturing items' latent aspects and users' diverse preferences. As a new generative paradigm, Diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this paper, we make the very first attempt to adapt Diffusion model to SR and propose DiffuRec, for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect user's multiple interests and item's various aspects adaptively. In diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterwards, the item representation is fed into an Approximator for target item representation reconstruction. In reversion phase, based on user's historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin.
Abstract:Offline inverse reinforcement learning (Offline IRL) aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent. Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving. However, the structure of an expert's preferences implicit in observed actions is closely linked to the expert's model of the environment dynamics (i.e. the ``world''). Thus, inaccurate models of the world obtained from finite data with limited coverage could compound inaccuracy in estimated rewards. To address this issue, we propose a bi-level optimization formulation of the estimation task wherein the upper level is likelihood maximization based upon a conservative model of the expert's policy (lower level). The policy model is conservative in that it maximizes reward subject to a penalty that is increasing in the uncertainty of the estimated model of the world. We propose a new algorithmic framework to solve the bi-level optimization problem formulation and provide statistical and computational guarantees of performance for the associated reward estimator. Finally, we demonstrate that the proposed algorithm outperforms the state-of-the-art offline IRL and imitation learning benchmarks by a large margin, over the continuous control tasks in MuJoCo and different datasets in the D4RL benchmark.
Abstract:Recent years have witnessed a big convergence of language, vision, and multi-modal pretraining. In this work, we present mPLUG-2, a new unified paradigm with modularized design for multi-modal pretraining, which can benefit from modality collaboration while addressing the problem of modality entanglement. In contrast to predominant paradigms of solely relying on sequence-to-sequence generation or encoder-based instance discrimination, mPLUG-2 introduces a multi-module composition network by sharing common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement. It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video. Empirical study shows that mPLUG-2 achieves state-of-the-art or competitive results on a broad range of over 30 downstream tasks, spanning multi-modal tasks of image-text and video-text understanding and generation, and uni-modal tasks of text-only, image-only, and video-only understanding. Notably, mPLUG-2 shows new state-of-the-art results of 48.0 top-1 accuracy and 80.3 CIDEr on the challenging MSRVTT video QA and video caption tasks with a far smaller model size and data scale. It also demonstrates strong zero-shot transferability on vision-language and video-language tasks. Code and models will be released in https://github.com/alibaba/AliceMind.
Abstract:Aligning objects with words plays a critical role in Image-Language BERT (IL-BERT) and Video-Language BERT (VDL-BERT). Different from the image case where an object covers some spatial patches, an object in a video usually appears as an object trajectory, i.e., it spans over a few spatial but longer temporal patches and thus contains abundant spatiotemporal contexts. However, modern VDL-BERTs neglect this trajectory characteristic that they usually follow IL-BERTs to deploy the patch-to-word (P2W) attention while such attention may over-exploit trivial spatial contexts and neglect significant temporal contexts. To amend this, we propose a novel TW-BERT to learn Trajectory-Word alignment for solving video-language tasks. Such alignment is learned by a newly designed trajectory-to-word (T2W) attention. Besides T2W attention, we also follow previous VDL-BERTs to set a word-to-patch (W2P) attention in the cross-modal encoder. Since T2W and W2P attentions have diverse structures, our cross-modal encoder is asymmetric. To further help this asymmetric cross-modal encoder build robust vision-language associations, we propose a fine-grained ``align-before-fuse'' strategy to pull close the embedding spaces calculated by the video and text encoders. By the proposed strategy and T2W attention, our TW-BERT achieves SOTA performances on text-to-video retrieval tasks, and comparable performances on video question answering tasks with some VDL-BERTs trained on much more data. The code will be available in the supplementary material.
Abstract:We design a novel global-local Transformer named \textbf{Ada-ClustFormer} (\textbf{ACF}) to generate captions. We use this name since each layer of ACF can adaptively cluster input elements to carry self-attention (Self-ATT) for learning local context. Compared with other global-local Transformers which carry Self-ATT in fixed-size windows, ACF can capture varying graininess, \eg, an object may cover different numbers of grids or a phrase may contain diverse numbers of words. To build ACF, we insert a probabilistic matrix C into the Self-ATT layer. For an input sequence {{s}_1,...,{s}_N , C_{i,j} softly determines whether the sub-sequence {s_i,...,s_j} should be clustered for carrying Self-ATT. For implementation, {C}_{i,j} is calculated from the contexts of {{s}_i,...,{s}_j}, thus ACF can exploit the input itself to decide which local contexts should be learned. By using ACF to build the vision encoder and language decoder, the captioning model can automatically discover the hidden structures in both vision and language, which encourages the model to learn a unified structural space for transferring more structural commonalities. The experiment results demonstrate the effectiveness of ACF that we achieve CIDEr of 137.8, which outperforms most SOTA captioning models and achieve comparable scores compared with some BERT-based models. The code will be available in the supplementary material.
Abstract:Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy that best fits observed sequences of states and actions implemented by an expert. Many algorithms for IRL have an inherently nested structure: the inner loop finds the optimal policy given parametrized rewards while the outer loop updates the estimates towards optimizing a measure of fit. For high dimensional environments such nested-loop structure entails a significant computational burden. To reduce the computational burden of a nested loop, novel methods such as SQIL [1] and IQ-Learn [2] emphasize policy estimation at the expense of reward estimation accuracy. However, without accurate estimated rewards, it is not possible to do counterfactual analysis such as predicting the optimal policy under different environment dynamics and/or learning new tasks. In this paper we develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy. In the proposed algorithm, each policy improvement step is followed by a stochastic gradient step for likelihood maximization. We show that the proposed algorithm provably converges to a stationary solution with a finite-time guarantee. If the reward is parameterized linearly, we show the identified solution corresponds to the solution of the maximum entropy IRL problem. Finally, by using robotics control problems in MuJoCo and their transfer settings, we show that the proposed algorithm achieves superior performance compared with other IRL and imitation learning benchmarks.
Abstract:Learning dynamic user preference has become an increasingly important component for many online platforms (e.g., video-sharing sites, e-commerce systems) to make sequential recommendations. Previous works have made many efforts to model item-item transitions over user interaction sequences, based on various architectures, e.g., recurrent neural networks and self-attention mechanism. Recently emerged graph neural networks also serve as useful backbone models to capture item dependencies in sequential recommendation scenarios. Despite their effectiveness, existing methods have far focused on item sequence representation with singular type of interactions, and thus are limited to capture dynamic heterogeneous relational structures between users and items (e.g., page view, add-to-favorite, purchase). To tackle this challenge, we design a Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies. Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels. Additionally, we incorporate the global multi-behavior dependency into the hypergraph neural architecture to capture the hierarchical long-range item correlations in a customized manner. Experimental results demonstrate the superiority of our MBHT over various state-of-the-art recommendation solutions across different settings. Further ablation studies validate the effectiveness of our model design and benefits of the new MBHT framework. Our implementation code is released at: https://github.com/yuh-yang/MBHT-KDD22.
Abstract:Multi-modal document pre-trained models have proven to be very effective in a variety of visually-rich document understanding (VrDU) tasks. Though existing document pre-trained models have achieved excellent performance on standard benchmarks for VrDU, the way they model and exploit the interactions between vision and language on documents has hindered them from better generalization ability and higher accuracy. In this work, we investigate the problem of vision-language joint representation learning for VrDU mainly from the perspective of supervisory signals. Specifically, a pre-training paradigm called Bi-VLDoc is proposed, in which a bidirectional vision-language supervision strategy and a vision-language hybrid-attention mechanism are devised to fully explore and utilize the interactions between these two modalities, to learn stronger cross-modal document representations with richer semantics. Benefiting from the learned informative cross-modal document representations, Bi-VLDoc significantly advances the state-of-the-art performance on three widely-used document understanding benchmarks, including Form Understanding (from 85.14% to 93.44%), Receipt Information Extraction (from 96.01% to 97.84%), and Document Classification (from 96.08% to 97.12%). On Document Visual QA, Bi-VLDoc achieves the state-of-the-art performance compared to previous single model methods.
Abstract:In recent years, many practitioners in quantitative finance have attempted to use Deep Reinforcement Learning (DRL) to build better quantitative trading (QT) strategies. Nevertheless, many existing studies fail to address several serious challenges, such as the non-stationary financial environment and the bias and variance trade-off when applying DRL in the real financial market. In this work, we proposed Safe-FinRL, a novel DRL-based high-freq stock trading strategy enhanced by the near-stationary financial environment and low bias and variance estimation. Our main contributions are twofold: firstly, we separate the long financial time series into the near-stationary short environment; secondly, we implement Trace-SAC in the near-stationary financial environment by incorporating the general retrace operator into the Soft Actor-Critic. Extensive experiments on the cryptocurrency market have demonstrated that Safe-FinRL has provided a stable value estimation and a steady policy improvement and reduced bias and variance significantly in the near-stationary financial environment.