Abstract:Recent advances in Large Language Models (LLMs) have enabled strong performance in long-form writing, yet existing supervised fine-tuning (SFT) approaches suffer from limitations such as data saturation and restricted learning capacity bounded by teacher signals. In this work, we present Writing-RL: an Adaptive Curriculum Reinforcement Learning framework to advance long-form writing capabilities beyond SFT. The framework consists of three key components: Margin-aware Data Selection strategy that prioritizes samples with high learning potential, Pairwise Comparison Reward mechanism that provides discriminative learning signals in the absence of verifiable rewards, and Dynamic Reference Scheduling approach, which plays a particularly critical role by adaptively adjusting task difficulty based on evolving model performance. Experiments on 7B-scale writer models show that our RL framework largely improves long-form writing performance over strong SFT baselines. Furthermore, we observe that models trained with long-output RL generalize surprisingly well to long-input reasoning tasks, potentially offering a promising perspective for rethinking long-context training.
Abstract:Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos. Despite recent advances in general video understanding, current MLLMs still struggle with fine-grained temporal reasoning. While reinforcement learning (RL) has been explored to address this issue recently, existing RL approaches remain limited in effectiveness. In this work, we propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding. MUSEG enables MLLMs to align queries with multiple relevant video segments, promoting more comprehensive temporal reasoning. To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning. Extensive experiments on temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG significantly outperforms existing methods and generalizes well across diverse temporal understanding scenarios. View our project at https://github.com/THUNLP-MT/MUSEG.
Abstract:This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59$\times$ context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.
Abstract:Recent large reasoning models (LRMs) have demonstrated strong reasoning capabilities through reinforcement learning (RL). These improvements have primarily been observed within the short-context reasoning tasks. In contrast, extending LRMs to effectively process and reason on long-context inputs via RL remains a critical unsolved challenge. To bridge this gap, we first formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process. To address these issues, we propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling. Specifically, we utilize a warm-up supervised fine-tuning (SFT) stage to establish a robust initial policy, followed by a curriculum-guided phased RL technique to stabilize the policy evolution, and enhanced with a difficulty-aware retrospective sampling strategy to incentivize the policy exploration. Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking, demonstrating leading performance among state-of-the-art LRMs. This work advances the development of practical long-context LRMs capable of robust reasoning across information-intensive environments.
Abstract:Generative models, particularly diffusion model, have emerged as powerful tools for sequential recommendation. However, accurately modeling user preferences remains challenging due to the noise perturbations inherent in the forward and reverse processes of diffusion-based methods. Towards this end, this study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task. Additionally, from the diffusion-model perspective, we integrate a reconstruction loss to improve robustness against noise perturbations, thereby retaining user preferences during the forward process. In the reverse process, we employ a deterministic reverse sampler, specifically an ODE-based updating function, to eliminate unnecessary randomness, thereby ensuring that the generated recommendations closely align with user needs. Extensive evaluations on four benchmark datasets reveal that FMRec achieves an average improvement of 6.53% over state-of-the-art methods. The replication code is available at https://github.com/FengLiu-1/FMRec.
Abstract:Session-based recommendation is gaining increasing attention due to its practical value in predicting the intents of anonymous users based on limited behaviors. Emerging efforts incorporate various side information to alleviate inherent data scarcity issues in this task, leading to impressive performance improvements. The core of side information-driven session-based recommendation is the discovery and utilization of diverse data. In this survey, we provide a comprehensive review of this task from a data-centric perspective. Specifically, this survey commences with a clear formulation of the task. This is followed by a detailed exploration of various benchmarks rich in side information that are pivotal for advancing research in this field. Afterwards, we delve into how different types of side information enhance the task, underscoring data characteristics and utility. Moreover, we discuss the usage of various side information, including data encoding, data injection, and involved techniques. A systematic review of research progress is then presented, with the taxonomy by the types of side information. Finally, we summarize the current limitations and present the future prospects of this vibrant topic.
Abstract:Recent years have witnessed significant progress in large language models' (LLMs) reasoning, which is largely due to the chain-of-thought (CoT) approaches, allowing models to generate intermediate reasoning steps before reaching the final answer. Building on these advances, state-of-the-art LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions. However, human beings are naturally cognitive misers and will prompt language models to give rather short responses, thus raising a significant conflict with CoT reasoning. In this paper, we delve into how LLMs' reasoning performance changes when users provide short-path prompts. The results and analysis reveal that language models can reason effectively and robustly without explicit CoT prompts, while under short-path prompting, LLMs' reasoning ability drops significantly and becomes unstable, even on grade-school problems. To address this issue, we propose two approaches: an instruction-guided approach and a fine-tuning approach, both designed to effectively manage the conflict. Experimental results show that both methods achieve high accuracy, providing insights into the trade-off between instruction adherence and reasoning accuracy in current models.
Abstract:Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
Abstract:The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available.
Abstract:In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing data-driven deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though knowledge-driven physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities of the same region using a hypergraph-based parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through cluster-based adversarial learning. Extensive experiments on two datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes.