Abstract:Multimodal Recommendation (MMR) systems are crucial for modern platforms but are often hampered by inherent noise and uncertainty in modal features, such as blurry images, diverse visual appearances, or ambiguous text. Existing methods often overlook this modality-specific uncertainty, leading to ineffective feature fusion. Furthermore, they fail to leverage rich similarity patterns among users and items to refine representations and their corresponding uncertainty estimates. To address these challenges, we propose a novel framework, Similarity Propagation-enhanced Uncertainty for Multimodal Recommendation (SPUMR). SPUMR explicitly models and mitigates uncertainty by first constructing the Modality Similarity Graph and the Collaborative Similarity Graph to refine representations from both content and behavioral perspectives. The Uncertainty-aware Preference Aggregation module then adaptively fuses the refined multimodal features, assigning greater weight to more reliable modalities. Extensive experiments on three benchmark datasets demonstrate that SPUMR achieves significant improvements over existing leading methods.
Abstract:Enhancing the moral alignment of Large Language Models (LLMs) is a critical challenge in AI safety. Current alignment techniques often act as superficial guardrails, leaving the intrinsic moral representations of LLMs largely untouched. In this paper, we bridge this gap by leveraging Moral Foundations Theory (MFT) to map and manipulate the fine-grained moral landscape of LLMs. Through cross-lingual linear probing, we validate the shared nature of moral representations in middle layers and uncover a shared yet different moral subspace between English and Chinese. Building upon this, we extract steerable Moral Vectors and successfully validate their efficacy at both internal and behavioral levels. Leveraging the high generalizability of morality, we propose Adaptive Moral Fusion (AMF), a dynamic inference-time intervention that synergizes probe detection with vector injection to tackle the safety-helpfulness trade-off. Empirical results confirm that our approach acts as a targeted intrinsic defense, effectively reducing incorrect refusals on benign queries while minimizing jailbreak success rates compared to standard baselines.
Abstract:Discharge medication recommendation plays a critical role in ensuring treatment continuity, preventing readmission, and improving long-term management for patients with chronic metabolic diseases. This paper present an overview of the CHIP 2025 Shared Task 2 competition, which aimed to develop state-of-the-art approaches for automatically recommending appro-priate discharge medications using real-world Chinese EHR data. For this task, we constructed CDrugRed, a high-quality dataset consisting of 5,894 de-identified hospitalization records from 3,190 patients in China. This task is challenging due to multi-label nature of medication recommendation, het-erogeneous clinical text, and patient-specific variability in treatment plans. A total of 526 teams registered, with 167 and 95 teams submitting valid results to the Phase A and Phase B leaderboards, respectively. The top-performing team achieved the highest overall performance on the final test set, with a Jaccard score of 0.5102, F1 score of 0.6267, demonstrating the potential of advanced large language model (LLM)-based ensemble systems. These re-sults highlight both the promise and remaining challenges of applying LLMs to medication recommendation in Chinese EHRs. The post-evaluation phase remains open at https://tianchi.aliyun.com/competition/entrance/532411/.
Abstract:Biomedical question answering (QA) requires accurate interpretation of complex medical knowledge. Large language models (LLMs) have shown promising capabilities in this domain, with retrieval-augmented generation (RAG) systems enhancing performance by incorporating external medical literature. However, RAG-based approaches in biomedical QA suffer from hallucinations due to post-retrieval noise and insufficient verification of retrieved evidence, undermining response reliability. We propose MedTrust-Guided Iterative RAG, a framework designed to enhance factual consistency and mitigate hallucinations in medical QA. Our method introduces three key innovations. First, it enforces citation-aware reasoning by requiring all generated content to be explicitly grounded in retrieved medical documents, with structured Negative Knowledge Assertions used when evidence is insufficient. Second, it employs an iterative retrieval-verification process, where a verification agent assesses evidence adequacy and refines queries through Medical Gap Analysis until reliable information is obtained. Third, it integrates the MedTrust-Align Module (MTAM) that combines verified positive examples with hallucination-aware negative samples, leveraging Direct Preference Optimization to reinforce citation-grounded reasoning while penalizing hallucination-prone response patterns. Experiments on MedMCQA, MedQA, and MMLU-Med demonstrate that our approach consistently outperforms competitive baselines across multiple model architectures, achieving the best average accuracy with gains of 2.7% for LLaMA3.1-8B-Instruct and 2.4% for Qwen3-8B.




Abstract:With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.
Abstract:Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.




Abstract:Metaphors are pervasive in communication, making them crucial for natural language processing (NLP). Previous research on automatic metaphor processing predominantly relies on training data consisting of English samples, which often reflect Western European or North American biases. This cultural skew can lead to an overestimation of model performance and contributions to NLP progress. However, the impact of cultural bias on metaphor processing, particularly in multimodal contexts, remains largely unexplored. To address this gap, we introduce MultiMM, a Multicultural Multimodal Metaphor dataset designed for cross-cultural studies of metaphor in Chinese and English. MultiMM consists of 8,461 text-image advertisement pairs, each accompanied by fine-grained annotations, providing a deeper understanding of multimodal metaphors beyond a single cultural domain. Additionally, we propose Sentiment-Enriched Metaphor Detection (SEMD), a baseline model that integrates sentiment embeddings to enhance metaphor comprehension across cultural backgrounds. Experimental results validate the effectiveness of SEMD on metaphor detection and sentiment analysis tasks. We hope this work increases awareness of cultural bias in NLP research and contributes to the development of fairer and more inclusive language models. Our dataset and code are available at https://github.com/DUTIR-YSQ/MultiMM.




Abstract:Session-based recommendation aims to predict intents of anonymous users based on limited behaviors. With the ability in alleviating data sparsity, contrastive learning is prevailing in the task. However, we spot that existing contrastive learning based methods still suffer from three obstacles: (1) they overlook item-level sparsity and primarily focus on session-level sparsity; (2) they typically augment sessions using item IDs like crop, mask and reorder, failing to ensure the semantic consistency of augmented views; (3) they treat all positive-negative signals equally, without considering their varying utility. To this end, we propose a novel multi-modal adaptive contrastive learning framework called MACL for session-based recommendation. In MACL, a multi-modal augmentation is devised to generate semantically consistent views at both item and session levels by leveraging item multi-modal features. Besides, we present an adaptive contrastive loss that distinguishes varying contributions of positive-negative signals to improve self-supervised learning. Extensive experiments on three real-world datasets demonstrate the superiority of MACL over state-of-the-art methods.
Abstract:Session-based recommendation is gaining increasing attention due to its practical value in predicting the intents of anonymous users based on limited behaviors. Emerging efforts incorporate various side information to alleviate inherent data scarcity issues in this task, leading to impressive performance improvements. The core of side information-driven session-based recommendation is the discovery and utilization of diverse data. In this survey, we provide a comprehensive review of this task from a data-centric perspective. Specifically, this survey commences with a clear formulation of the task. This is followed by a detailed exploration of various benchmarks rich in side information that are pivotal for advancing research in this field. Afterwards, we delve into how different types of side information enhance the task, underscoring data characteristics and utility. Moreover, we discuss the usage of various side information, including data encoding, data injection, and involved techniques. A systematic review of research progress is then presented, with the taxonomy by the types of side information. Finally, we summarize the current limitations and present the future prospects of this vibrant topic.




Abstract:Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.