Abstract:Visual object tracking is a crucial research topic in the fields of computer vision and multi-modal fusion. Among various approaches, robust visual tracking that combines RGB frames with Event streams has attracted increasing attention from researchers. While striving for high accuracy and efficiency in tracking, it is also important to explore how to effectively conduct adversarial attacks and defenses on RGB-Event stream tracking algorithms, yet research in this area remains relatively scarce. To bridge this gap, in this paper, we propose a cross-modal adversarial attack algorithm for RGB-Event visual tracking. Because of the diverse representations of Event streams, and given that Event voxels and frames are more commonly used, this paper will focus on these two representations for an in-depth study. Specifically, for the RGB-Event voxel, we first optimize the perturbation by adversarial loss to generate RGB frame adversarial examples. For discrete Event voxel representations, we propose a two-step attack strategy, more in detail, we first inject Event voxels into the target region as initialized adversarial examples, then, conduct a gradient-guided optimization by perturbing the spatial location of the Event voxels. For the RGB-Event frame based tracking, we optimize the cross-modal universal perturbation by integrating the gradient information from multimodal data. We evaluate the proposed approach against attacks on three widely used RGB-Event Tracking datasets, i.e., COESOT, FE108, and VisEvent. Extensive experiments show that our method significantly reduces the performance of the tracker across numerous datasets in both unimodal and multimodal scenarios. The source code will be released on https://github.com/Event-AHU/Adversarial_Attack_Defense
Abstract:Existing pedestrian attribute recognition methods are generally developed based on RGB frame cameras. However, these approaches are constrained by the limitations of RGB cameras, such as sensitivity to lighting conditions and motion blur, which hinder their performance. Furthermore, current attribute recognition primarily focuses on analyzing pedestrians' external appearance and clothing, lacking an exploration of emotional dimensions. In this paper, we revisit these issues and propose a novel multi-modal RGB-Event attribute recognition task by drawing inspiration from the advantages of event cameras in low-light, high-speed, and low-power consumption. Specifically, we introduce the first large-scale multi-modal pedestrian attribute recognition dataset, termed EventPAR, comprising 100K paired RGB-Event samples that cover 50 attributes related to both appearance and six human emotions, diverse scenes, and various seasons. By retraining and evaluating mainstream PAR models on this dataset, we establish a comprehensive benchmark and provide a solid foundation for future research in terms of data and algorithmic baselines. In addition, we propose a novel RWKV-based multi-modal pedestrian attribute recognition framework, featuring an RWKV visual encoder and an asymmetric RWKV fusion module. Extensive experiments are conducted on our proposed dataset as well as two simulated datasets (MARS-Attribute and DukeMTMC-VID-Attribute), achieving state-of-the-art results. The source code and dataset will be released on https://github.com/Event-AHU/OpenPAR
Abstract:Nuclear fusion is one of the most promising ways for humans to obtain infinite energy. Currently, with the rapid development of artificial intelligence, the mission of nuclear fusion has also entered a critical period of its development. How to let more people to understand nuclear fusion and join in its research is one of the effective means to accelerate the implementation of fusion. This paper proposes the first large model in the field of nuclear fusion, XiHeFusion, which is obtained through supervised fine-tuning based on the open-source large model Qwen2.5-14B. We have collected multi-source knowledge about nuclear fusion tasks to support the training of this model, including the common crawl, eBooks, arXiv, dissertation, etc. After the model has mastered the knowledge of the nuclear fusion field, we further used the chain of thought to enhance its logical reasoning ability, making XiHeFusion able to provide more accurate and logical answers. In addition, we propose a test questionnaire containing 180+ questions to assess the conversational ability of this science popularization large model. Extensive experimental results show that our nuclear fusion dialogue model, XiHeFusion, can perform well in answering science popularization knowledge. The pre-trained XiHeFusion model is released on https://github.com/Event-AHU/XiHeFusion.
Abstract:Weakly-Supervised Dense Video Captioning (WSDVC) aims to localize and describe all events of interest in a video without requiring annotations of event boundaries. This setting poses a great challenge in accurately locating the temporal location of event, as the relevant supervision is unavailable. Existing methods rely on explicit alignment constraints between event locations and captions, which involve complex event proposal procedures during both training and inference. To tackle this problem, we propose a novel implicit location-caption alignment paradigm by complementary masking, which simplifies the complex event proposal and localization process while maintaining effectiveness. Specifically, our model comprises two components: a dual-mode video captioning module and a mask generation module. The dual-mode video captioning module captures global event information and generates descriptive captions, while the mask generation module generates differentiable positive and negative masks for localizing the events. These masks enable the implicit alignment of event locations and captions by ensuring that captions generated from positively and negatively masked videos are complementary, thereby forming a complete video description. In this way, even under weak supervision, the event location and event caption can be aligned implicitly. Extensive experiments on the public datasets demonstrate that our method outperforms existing weakly-supervised methods and achieves competitive results compared to fully-supervised methods.
Abstract:Multimodal RLHF usually happens after supervised finetuning (SFT) stage to continually improve vision-language models' (VLMs) comprehension. Conventional wisdom holds its superiority over continual SFT during this preference alignment stage. In this paper, we observe that the inherent value of multimodal RLHF lies in its negative supervision, the logit of the rejected responses. We thus propose a novel negative supervised finetuning (nSFT) approach that fully excavates these information resided. Our nSFT disentangles this negative supervision in RLHF paradigm, and continually aligns VLMs with a simple SFT loss. This is more memory efficient than multimodal RLHF where 2 (e.g., DPO) or 4 (e.g., PPO) large VLMs are strictly required. The effectiveness of nSFT is rigorously proved by comparing it with various multimodal RLHF approaches, across different dataset sources, base VLMs and evaluation metrics. Besides, fruitful of ablations are provided to support our hypothesis. We hope this paper will stimulate further research to properly align large vision language models.
Abstract:We focus on improving the visual understanding capability for boosting the vision-language models. We propose \textbf{Arcana}, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``\textit{ladder}'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at \url{https://arcana-project-page.github.io}.
Abstract:The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
Abstract:Open-vocabulary object detection focusing on detecting novel categories guided by natural language. In this report, we propose Open-Vocabulary Light-Weighted Detection Transformer (OVLW-DETR), a deployment friendly open-vocabulary detector with strong performance and low latency. Building upon OVLW-DETR, we provide an end-to-end training recipe that transferring knowledge from vision-language model (VLM) to object detector with simple alignment. We align detector with the text encoder from VLM by replacing the fixed classification layer weights in detector with the class-name embeddings extracted from the text encoder. Without additional fusing module, OVLW-DETR is flexible and deployment friendly, making it easier to implement and modulate. improving the efficiency of interleaved attention computation. Experimental results demonstrate that the proposed approach is superior over existing real-time open-vocabulary detectors on standard Zero-Shot LVIS benchmark. Source code and pre-trained models are available at [https://github.com/Atten4Vis/LW-DETR].
Abstract:In this paper, we propose a novel approach to enhance medical image segmentation during test time. Instead of employing hand-crafted transforms or functions on the input test image to create multiple views for test-time augmentation, we advocate for the utilization of an advanced domain-fine-tuned generative model (GM), e.g., stable diffusion (SD), for test-time augmentation. Given that the GM has been trained to comprehend and encapsulate comprehensive domain data knowledge, it is superior than segmentation models in terms of representing the data characteristics and distribution. Hence, by integrating the GM into test-time augmentation, we can effectively generate multiple views of a given test sample, aligning with the content and appearance characteristics of the sample and the related local data distribution. This approach renders the augmentation process more adaptable and resilient compared to conventional handcrafted transforms. Comprehensive experiments conducted across three medical image segmentation tasks (nine datasets) demonstrate the efficacy and versatility of the proposed TTGA in enhancing segmentation outcomes. Moreover, TTGA significantly improves pixel-wise error estimation, thereby facilitating the deployment of a more reliable segmentation system. Code will be released at: https://github.com/maxiao0234/TTGA.
Abstract:In this paper, we present a light-weight detection transformer, LW-DETR, which outperforms YOLOs for real-time object detection. The architecture is a simple stack of a ViT encoder, a projector, and a shallow DETR decoder. Our approach leverages recent advanced techniques, such as training-effective techniques, e.g., improved loss and pretraining, and interleaved window and global attentions for reducing the ViT encoder complexity. We improve the ViT encoder by aggregating multi-level feature maps, and the intermediate and final feature maps in the ViT encoder, forming richer feature maps, and introduce window-major feature map organization for improving the efficiency of interleaved attention computation. Experimental results demonstrate that the proposed approach is superior over existing real-time detectors, e.g., YOLO and its variants, on COCO and other benchmark datasets. Code and models are available at (https://github.com/Atten4Vis/LW-DETR).