Abstract:Session-based recommendation aims to predict intents of anonymous users based on limited behaviors. With the ability in alleviating data sparsity, contrastive learning is prevailing in the task. However, we spot that existing contrastive learning based methods still suffer from three obstacles: (1) they overlook item-level sparsity and primarily focus on session-level sparsity; (2) they typically augment sessions using item IDs like crop, mask and reorder, failing to ensure the semantic consistency of augmented views; (3) they treat all positive-negative signals equally, without considering their varying utility. To this end, we propose a novel multi-modal adaptive contrastive learning framework called MACL for session-based recommendation. In MACL, a multi-modal augmentation is devised to generate semantically consistent views at both item and session levels by leveraging item multi-modal features. Besides, we present an adaptive contrastive loss that distinguishes varying contributions of positive-negative signals to improve self-supervised learning. Extensive experiments on three real-world datasets demonstrate the superiority of MACL over state-of-the-art methods.
Abstract:Session-based recommendation is gaining increasing attention due to its practical value in predicting the intents of anonymous users based on limited behaviors. Emerging efforts incorporate various side information to alleviate inherent data scarcity issues in this task, leading to impressive performance improvements. The core of side information-driven session-based recommendation is the discovery and utilization of diverse data. In this survey, we provide a comprehensive review of this task from a data-centric perspective. Specifically, this survey commences with a clear formulation of the task. This is followed by a detailed exploration of various benchmarks rich in side information that are pivotal for advancing research in this field. Afterwards, we delve into how different types of side information enhance the task, underscoring data characteristics and utility. Moreover, we discuss the usage of various side information, including data encoding, data injection, and involved techniques. A systematic review of research progress is then presented, with the taxonomy by the types of side information. Finally, we summarize the current limitations and present the future prospects of this vibrant topic.
Abstract:Recently, large language models(LLMs) have played an increasingly important role in solving a wide range of NLP tasks, leveraging their capabilities of natural language understanding and generating. Integration with external tools further enhances LLMs' effectiveness, providing more precise, timely, and specialized responses. However, LLMs still encounter difficulties with non-executable actions and improper actions, which are primarily attributed to incorrect parameters. The process of generating parameters by LLMs is confined to the tool level, employing the coarse-grained strategy without considering the different difficulties of various tools. To address this issue, we propose TUMS, a novel framework designed to enhance the tool-use capabilities of LLMs by transforming tool-level processing into parameter-level processing. Specifically, our framework consists of four key components: (1) an intent recognizer that identifies the user's intent to help LLMs better understand the task; (2) a task decomposer that breaks down complex tasks into simpler subtasks, each involving a tool call; (3) a subtask processor equipped with multi-structure handlers to generate accurate parameters; and (4) an executor. Our empirical studies have evidenced the effectiveness and efficiency of the TUMS framework with an average of 19.6\% and 50.6\% improvement separately on easy and hard benchmarks of ToolQA, meanwhile, we demonstrated the key contribution of each part with ablation experiments, offering more insights and stimulating future research on Tool-augmented LLMs.
Abstract:Efficiently modeling and exploiting opponents is a long-standing challenge in adversarial domains. Large Language Models (LLMs) trained on extensive textual data have recently demonstrated outstanding performance in general tasks, introducing new research directions for opponent modeling. Some studies primarily focus on directly using LLMs to generate decisions based on the elaborate prompt context that incorporates opponent descriptions, while these approaches are limited to scenarios where LLMs possess adequate domain expertise. To address that, we introduce a two-stage Strategy-Augmented Planning (SAP) framework that significantly enhances the opponent exploitation capabilities of LLM-based agents by utilizing a critical component, the Strategy Evaluation Network (SEN). Specifically, in the offline stage, we construct an explicit strategy space and subsequently collect strategy-outcome pair data for training the SEN network. During the online phase, SAP dynamically recognizes the opponent's strategies and greedily exploits them by searching best response strategy on the well-trained SEN, finally translating strategy to a course of actions by carefully designed prompts. Experimental results show that SAP exhibits robust generalization capabilities, allowing it to perform effectively not only against previously encountered opponent strategies but also against novel, unseen strategies. In the MicroRTS environment, SAP achieves a 85.35\% performance improvement over baseline methods and matches the competitiveness of reinforcement learning approaches against state-of-the-art (SOTA) rule-based AI.
Abstract:Large language models (LLMs) demonstrate remarkable text comprehension and generation capabilities but often lack the ability to utilize up-to-date or domain-specific knowledge not included in their training data. To address this gap, we introduce KEDiT, an efficient method for fine-tuning LLMs for knowledge-grounded dialogue generation. KEDiT operates in two main phases: first, it employs an information bottleneck to compress retrieved knowledge into learnable parameters, retaining essential information while minimizing computational overhead. Second, a lightweight knowledge-aware adapter integrates these compressed knowledge vectors into the LLM during fine-tuning, updating less than 2\% of the model parameters. The experimental results on the Wizard of Wikipedia and a newly constructed PubMed-Dialog dataset demonstrate that KEDiT excels in generating contextually relevant and informative responses, outperforming competitive baselines in automatic, LLM-based, and human evaluations. This approach effectively combines the strengths of pretrained LLMs with the adaptability needed for incorporating dynamic knowledge, presenting a scalable solution for fields such as medicine.
Abstract:LLMs are widely used for offensive language detection due to their advanced capability. However, the challenges posed by human annotation disagreement in real-world datasets remain underexplored. These disagreement samples are difficult to detect due to their ambiguous nature. Additionally, the confidence of LLMs in processing disagreement samples can provide valuable insights into their alignment with human annotators. To address this gap, we systematically evaluate the ability of LLMs to detect offensive language with annotation disagreement. We compare the binary accuracy of multiple LLMs across varying annotation agreement levels and analyze the relationship between LLM confidence and annotation agreement. Furthermore, we investigate the impact of disagreement samples on LLM decision-making during few-shot learning and instruction fine-tuning. Our findings highlight the challenges posed by disagreement samples and offer guidance for improving LLM-based offensive language detection.
Abstract:Exploration in sparse reward environments remains a significant challenge in reinforcement learning, particularly in Contextual Markov Decision Processes (CMDPs), where environments differ across episodes. Existing episodic intrinsic motivation methods for CMDPs primarily rely on count-based approaches, which are ineffective in large state spaces, or on similarity-based methods that lack appropriate metrics for state comparison. To address these shortcomings, we propose Episodic Novelty Through Temporal Distance (ETD), a novel approach that introduces temporal distance as a robust metric for state similarity and intrinsic reward computation. By employing contrastive learning, ETD accurately estimates temporal distances and derives intrinsic rewards based on the novelty of states within the current episode. Extensive experiments on various benchmark tasks demonstrate that ETD significantly outperforms state-of-the-art methods, highlighting its effectiveness in enhancing exploration in sparse reward CMDPs.
Abstract:Multimodal fake news detection has become one of the most crucial issues on social media platforms. Although existing methods have achieved advanced performance, two main challenges persist: (1) Under-performed multimodal news information fusion due to model architecture solidification, and (2) weak generalization ability on partial-modality contained fake news. To meet these challenges, we propose a novel and flexible triple path enhanced neural architecture search model MUSE. MUSE includes two dynamic paths for detecting partial-modality contained fake news and a static path for exploiting potential multimodal correlations. Experimental results show that MUSE achieves stable performance improvement over the baselines.
Abstract:Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.
Abstract:While many sophisticated exploration methods have been proposed, their lack of generality and high computational cost often lead researchers to favor simpler methods like $\epsilon$-greedy. Motivated by this, we introduce $\beta$-DQN, a simple and efficient exploration method that augments the standard DQN with a behavior function $\beta$. This function estimates the probability that each action has been taken at each state. By leveraging $\beta$, we generate a population of diverse policies that balance exploration between state-action coverage and overestimation bias correction. An adaptive meta-controller is designed to select an effective policy for each episode, enabling flexible and explainable exploration. $\beta$-DQN is straightforward to implement and adds minimal computational overhead to the standard DQN. Experiments on both simple and challenging exploration domains show that $\beta$-DQN outperforms existing baseline methods across a wide range of tasks, providing an effective solution for improving exploration in deep reinforcement learning.