Abstract:The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
Abstract:Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
Abstract:Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video
Abstract:Autoregressive models have emerged as a powerful paradigm for visual content creation, but often overlook the intrinsic structural properties of visual data. Our prior work, IAR, initiated a direction to address this by reorganizing the visual codebook based on embedding similarity, thereby improving generation robustness. However, it is constrained by the rigidity of pre-trained codebooks and the inaccuracies of hard, uniform clustering. To overcome these limitations, we propose IAR2, an advanced autoregressive framework that enables a hierarchical semantic-detail synthesis process. At the core of IAR2 is a novel Semantic-Detail Associated Dual Codebook, which decouples image representations into a semantic codebook for global semantic information and a detail codebook for fine-grained refinements. It expands the quantization capacity from a linear to a polynomial scale, significantly enhancing expressiveness. To accommodate this dual representation, we propose a Semantic-Detail Autoregressive Prediction scheme coupled with a Local-Context Enhanced Autoregressive Head, which performs hierarchical prediction-first the semantic token, then the detail token-while leveraging a local context window to enhance spatial coherence. Furthermore, for conditional generation, we introduce a Progressive Attention-Guided Adaptive CFG mechanism that dynamically modulates the guidance scale for each token based on its relevance to the condition and its temporal position in the generation sequence, improving conditional alignment without sacrificing realism. Extensive experiments demonstrate that IAR2 sets a new state-of-the-art for autoregressive image generation, achieving a FID of 1.50 on ImageNet. Our model not only surpasses previous methods in performance but also demonstrates superior computational efficiency, highlighting the effectiveness of our structured, coarse-to-fine generation strategy.
Abstract:The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Abstract:Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
Abstract:Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.




Abstract:Image inpainting aims to fill the missing region of an image. Recently, there has been a surge of interest in foreground-conditioned background inpainting, a sub-task that fills the background of an image while the foreground subject and associated text prompt are provided. Existing background inpainting methods typically strictly preserve the subject's original position from the source image, resulting in inconsistencies between the subject and the generated background. To address this challenge, we propose a new task, the "Text-Guided Subject-Position Variable Background Inpainting", which aims to dynamically adjust the subject position to achieve a harmonious relationship between the subject and the inpainted background, and propose the Adaptive Transformation Agent (A$^\text{T}$A) for this task. Firstly, we design a PosAgent Block that adaptively predicts an appropriate displacement based on given features to achieve variable subject-position. Secondly, we design the Reverse Displacement Transform (RDT) module, which arranges multiple PosAgent blocks in a reverse structure, to transform hierarchical feature maps from deep to shallow based on semantic information. Thirdly, we equip A$^\text{T}$A with a Position Switch Embedding to control whether the subject's position in the generated image is adaptively predicted or fixed. Extensive comparative experiments validate the effectiveness of our A$^\text{T}$A approach, which not only demonstrates superior inpainting capabilities in subject-position variable inpainting, but also ensures good performance on subject-position fixed inpainting.
Abstract:Image inversion is a fundamental task in generative models, aiming to map images back to their latent representations to enable downstream applications such as editing, restoration, and style transfer. This paper provides a comprehensive review of the latest advancements in image inversion techniques, focusing on two main paradigms: Generative Adversarial Network (GAN) inversion and diffusion model inversion. We categorize these techniques based on their optimization methods. For GAN inversion, we systematically classify existing methods into encoder-based approaches, latent optimization approaches, and hybrid approaches, analyzing their theoretical foundations, technical innovations, and practical trade-offs. For diffusion model inversion, we explore training-free strategies, fine-tuning methods, and the design of additional trainable modules, highlighting their unique advantages and limitations. Additionally, we discuss several popular downstream applications and emerging applications beyond image tasks, identifying current challenges and future research directions. By synthesizing the latest developments, this paper aims to provide researchers and practitioners with a valuable reference resource, promoting further advancements in the field of image inversion. We keep track of the latest works at https://github.com/RyanChenYN/ImageInversion




Abstract:Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation.