



Abstract:Large and diverse datasets are needed for training generalist robot policies that have potential to control a variety of robot embodiments -- robot arm and gripper combinations -- across diverse tasks and environments. As re-collecting demonstrations and retraining for each new hardware platform are prohibitively costly, we show that existing robot data can be augmented for transfer and generalization. The Open X-Embodiment (OXE) dataset, which aggregates demonstrations from over 60 robot datasets, has been widely used as the foundation for training generalist policies. However, it is highly imbalanced: the top four robot types account for over 85\% of its real data, which risks overfitting to robot-scene combinations. We present AugE-Toolkit, a scalable robot augmentation pipeline, and OXE-AugE, a high-quality open-source dataset that augments OXE with 9 different robot embodiments. OXE-AugE provides over 4.4 million trajectories, more than triple the size of the original OXE. We conduct a systematic study of how scaling robot augmentation impacts cross-embodiment learning. Results suggest that augmenting datasets with diverse arms and grippers improves policy performance not only on the augmented robots, but also on unseen robots and even the original robots under distribution shifts. In physical experiments, we demonstrate that state-of-the-art generalist policies such as OpenVLA and $π_0$ benefit from fine-tuning on OXE-AugE, improving success rates by 24-45% on previously unseen robot-gripper combinations across four real-world manipulation tasks. Project website: https://OXE-AugE.github.io/.
Abstract:Reinforcement learning(RL) post-training has become essential for aligning large language models (LLMs), yet its efficiency is increasingly constrained by the rollout phase, where long trajectories are generated token by token. We identify a major bottleneck:the long-tail distribution of rollout lengths, where a small fraction of long generations dominates wall clock time and a complementary opportunity; the availability of historical rollouts that reveal stable prompt level patterns across training epochs. Motivated by these observations, we propose DAS, a Distribution Aware Speculative decoding framework that accelerates RL rollouts without altering model outputs. DAS integrates two key ideas: an adaptive, nonparametric drafter built from recent rollouts using an incrementally maintained suffix tree, and a length aware speculation policy that allocates more aggressive draft budgets to long trajectories that dominate makespan. This design exploits rollout history to sustain acceptance while balancing base and token level costs during decoding. Experiments on math and code reasoning tasks show that DAS reduces rollout time up to 50% while preserving identical training curves, demonstrating that distribution-aware speculative decoding can significantly accelerate RL post training without compromising learning quality.




Abstract:Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
Abstract:Cooperative perception through Vehicle-to-Everything (V2X) communication offers significant potential for enhancing vehicle perception by mitigating occlusions and expanding the field of view. However, past research has predominantly focused on improving accuracy metrics without addressing the crucial system-level considerations of efficiency, latency, and real-world deployability. Noticeably, most existing systems rely on full-precision models, which incur high computational and transmission costs, making them impractical for real-time operation in resource-constrained environments. In this paper, we introduce \textbf{QuantV2X}, the first fully quantized multi-agent system designed specifically for efficient and scalable deployment of multi-modal, multi-agent V2X cooperative perception. QuantV2X introduces a unified end-to-end quantization strategy across both neural network models and transmitted message representations that simultaneously reduces computational load and transmission bandwidth. Remarkably, despite operating under low-bit constraints, QuantV2X achieves accuracy comparable to full-precision systems. More importantly, when evaluated under deployment-oriented metrics, QuantV2X reduces system-level latency by 3.2$\times$ and achieves a +9.5 improvement in mAP30 over full-precision baselines. Furthermore, QuantV2X scales more effectively, enabling larger and more capable models to fit within strict memory budgets. These results highlight the viability of a fully quantized multi-agent intermediate fusion system for real-world deployment. The system will be publicly released to promote research in this field: https://github.com/ucla-mobility/QuantV2X.
Abstract:Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively.
Abstract:The substantial training cost of diffusion models hinders their deployment. Immiscible Diffusion recently showed that reducing diffusion trajectory mixing in the noise space via linear assignment accelerates training by simplifying denoising. To extend immiscible diffusion beyond the inefficient linear assignment under high batch sizes and high dimensions, we refine this concept to a broader miscibility reduction at any layer and by any implementation. Specifically, we empirically demonstrate the bijective nature of the denoising process with respect to immiscible diffusion, ensuring its preservation of generative diversity. Moreover, we provide thorough analysis and show step-by-step how immiscibility eases denoising and improves efficiency. Extending beyond linear assignment, we propose a family of implementations including K-nearest neighbor (KNN) noise selection and image scaling to reduce miscibility, achieving up to >4x faster training across diverse models and tasks including unconditional/conditional generation, image editing, and robotics planning. Furthermore, our analysis of immiscibility offers a novel perspective on how optimal transport (OT) enhances diffusion training. By identifying trajectory miscibility as a fundamental bottleneck, we believe this work establishes a potentially new direction for future research into high-efficiency diffusion training. The code is available at https://github.com/yhli123/Immiscible-Diffusion.
Abstract:With the rapid advancement of deep learning, the field of change detection (CD) in remote sensing imagery has achieved remarkable progress. Existing change detection methods primarily focus on achieving higher accuracy with increased computational costs and parameter sizes, leaving development of lightweight methods for rapid real-world processing an underexplored challenge. To address this challenge, we propose a Lightweight Difference Guiding Network (LDGNet), leveraging absolute difference image to guide optical remote sensing change detection. First, to enhance the feature representation capability of the lightweight backbone network, we propose the Difference Guiding Module (DGM), which leverages multi-scale features extracted from the absolute difference image to progressively influence the original image encoder at each layer, thereby reinforcing feature extraction. Second, we propose the Difference-Aware Dynamic Fusion (DADF) module with Visual State Space Model (VSSM) for lightweight long-range dependency modeling. The module first uses feature absolute differences to guide VSSM's global contextual modeling of change regions, then employs difference attention to dynamically fuse these long-range features with feature differences, enhancing change semantics while suppressing noise and background. Extensive experiments on multiple datasets demonstrate that our method achieves comparable or superior performance to current state-of-the-art (SOTA) methods requiring several times more computation, while maintaining only 3.43M parameters and 1.12G FLOPs.
Abstract:Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.




Abstract:Reinforcement Learning and Imitation Learning have achieved widespread success in many domains but remain constrained during real-world deployment. One of the main issues is the additional requirements that were not considered during training. To address this challenge, policy customization has been introduced, aiming to adapt a prior policy while preserving its inherent properties and meeting new task-specific requirements. A principled approach to policy customization is Residual Q-Learning (RQL), which formulates the problem as a Markov Decision Process (MDP) and derives a family of value-based learning algorithms. However, RQL has not yet been applied to policy gradient methods, which restricts its applicability, especially in tasks where policy gradient has already proven more effective. In this work, we first derive a concise form of Soft Policy Gradient as a preliminary. Building on this, we introduce Residual Policy Gradient (RPG), which extends RQL to policy gradient methods, allowing policy customization in gradient-based RL settings. With the view of RPG, we rethink the KL-regularized objective widely used in RL fine-tuning. We show that under certain assumptions, KL-regularized objective leads to a maximum-entropy policy that balances the inherent properties and task-specific requirements on a reward-level. Our experiments in MuJoCo demonstrate the effectiveness of Soft Policy Gradient and Residual Policy Gradient.




Abstract:We provide a new LLM-compression solution via SVD, unlocking new possibilities for LLM compression beyond quantization and pruning. We point out that the optimal use of SVD lies in truncating activations, rather than merely using activations as an optimization distance. Building on this principle, we address three critical challenges in SVD-based LLM compression: including (1) How can we determine the optimal activation truncation position for each weight matrix in LLMs? (2) How can we efficiently reconstruct the weight matrices based on truncated activations? (3) How can we address the inherent "injection" nature that results in the information loss of the SVD? We propose Dobi-SVD, which establishes a new, principled approach to SVD-based LLM compression.