Abstract:Existing multi-modal fusion methods typically apply static frame-based image fusion techniques directly to video fusion tasks, neglecting inherent temporal dependencies and leading to inconsistent results across frames. To address this limitation, we propose the first video fusion framework that explicitly incorporates temporal modeling with visual-semantic collaboration to simultaneously ensure visual fidelity, semantic accuracy, and temporal consistency. First, we introduce a visual-semantic interaction module consisting of a semantic branch and a visual branch, with Dinov2 and VGG19 employed for targeted distillation, allowing simultaneous enhancement of both the visual and semantic representations. Second, we pioneer integrate the video degradation enhancement task into the video fusion pipeline by constructing a temporal cooperative module, which leverages temporal dependencies to facilitate weak information recovery. Third, to ensure temporal consistency, we embed a temporal-enhanced mechanism into the network and devise a temporal loss to guide the optimization process. Finally, we introduce two innovative evaluation metrics tailored for video fusion, aimed at assessing the temporal consistency of the generated fused videos. Extensive experimental results on public video datasets demonstrate the superiority of our method. Our code is released at https://github.com/Meiqi-Gong/TemCoCo.
Abstract:In low-light image enhancement, Retinex-based deep learning methods have garnered significant attention due to their exceptional interpretability. These methods decompose images into mutually independent illumination and reflectance components, allows each component to be enhanced separately. In fact, achieving perfect decomposition of illumination and reflectance components proves to be quite challenging, with some residuals still existing after decomposition. In this paper, we formally name these residuals as inter-component residuals (ICR), which has been largely underestimated by previous methods. In our investigation, ICR not only affects the accuracy of the decomposition but also causes enhanced components to deviate from the ideal outcome, ultimately reducing the final synthesized image quality. To address this issue, we propose a novel Inter-correction Retinex model (IRetinex) to alleviate ICR during the decomposition and enhancement stage. In the decomposition stage, we leverage inter-component residual reduction module to reduce the feature similarity between illumination and reflectance components. In the enhancement stage, we utilize the feature similarity between the two components to detect and mitigate the impact of ICR within each enhancement unit. Extensive experiments on three low-light benchmark datasets demonstrated that by reducing ICR, our method outperforms state-of-the-art approaches both qualitatively and quantitatively.
Abstract:Recent progress in two-view geometry increasingly emphasizes enforcing smoothness and global consistency priors when estimating motion fields between pairs of images. However, in complex real-world scenes, characterized by extreme viewpoint and scale changes as well as pronounced depth discontinuities, the motion field often exhibits diverse and heterogeneous motion patterns. Most existing methods lack targeted modeling strategies and fail to explicitly account for this variability, resulting in estimated motion fields that diverge from their true underlying structure and distribution. We observe that Mixture-of-Experts (MoE) can assign dedicated experts to motion sub-fields, enabling a divide-and-conquer strategy for heterogeneous motion patterns. Building on this insight, we re-architect motion field modeling in two-view geometry with GeoMoE, a streamlined framework. Specifically, we first devise a Probabilistic Prior-Guided Decomposition strategy that exploits inlier probability signals to perform a structure-aware decomposition of the motion field into heterogeneous sub-fields, sharply curbing outlier-induced bias. Next, we introduce an MoE-Enhanced Bi-Path Rectifier that enhances each sub-field along spatial-context and channel-semantic paths and routes it to a customized expert for targeted modeling, thereby decoupling heterogeneous motion regimes, suppressing cross-sub-field interference and representational entanglement, and yielding fine-grained motion-field rectification. With this minimalist design, GeoMoE outperforms prior state-of-the-art methods in relative pose and homography estimation and shows strong generalization. The source code and pre-trained models are available at https://github.com/JiajunLe/GeoMoE.
Abstract:Image matching, which establishes correspondences between two-view images to recover 3D structure and camera geometry, serves as a cornerstone in computer vision and underpins a wide range of applications, including visual localization, 3D reconstruction, and simultaneous localization and mapping (SLAM). Traditional pipelines composed of ``detector-descriptor, feature matcher, outlier filter, and geometric estimator'' falter in challenging scenarios. Recent deep-learning advances have significantly boosted both robustness and accuracy. This survey adopts a unique perspective by comprehensively reviewing how deep learning has incrementally transformed the classical image matching pipeline. Our taxonomy highly aligns with the traditional pipeline in two key aspects: i) the replacement of individual steps in the traditional pipeline with learnable alternatives, including learnable detector-descriptor, outlier filter, and geometric estimator; and ii) the merging of multiple steps into end-to-end learnable modules, encompassing middle-end sparse matcher, end-to-end semi-dense/dense matcher, and pose regressor. We first examine the design principles, advantages, and limitations of both aspects, and then benchmark representative methods on relative pose recovery, homography estimation, and visual localization tasks. Finally, we discuss open challenges and outline promising directions for future research. By systematically categorizing and evaluating deep learning-driven strategies, this survey offers a clear overview of the evolving image matching landscape and highlights key avenues for further innovation.
Abstract:Diffusion models have achieved remarkable progress in universal image restoration. While existing methods speed up inference by reducing sampling steps, substantial step intervals often introduce cumulative errors. Moreover, they struggle to balance the commonality of degradation representations and restoration quality. To address these challenges, we introduce \textbf{DGSolver}, a diffusion generalist solver with universal posterior sampling. We first derive the exact ordinary differential equations for generalist diffusion models and tailor high-order solvers with a queue-based accelerated sampling strategy to improve both accuracy and efficiency. We then integrate universal posterior sampling to better approximate manifold-constrained gradients, yielding a more accurate noise estimation and correcting errors in inverse inference. Extensive experiments show that DGSolver outperforms state-of-the-art methods in restoration accuracy, stability, and scalability, both qualitatively and quantitatively. Code and models will be available at https://github.com/MiliLab/DGSolver.
Abstract:Current image fusion methods struggle to adapt to real-world environments encompassing diverse degradations with spatially varying characteristics. To address this challenge, we propose a robust fusion controller (RFC) capable of achieving degradation-aware image fusion through fine-grained language instructions, ensuring its reliable application in adverse environments. Specifically, RFC first parses language instructions to innovatively derive the functional condition and the spatial condition, where the former specifies the degradation type to remove, while the latter defines its spatial coverage. Then, a composite control priori is generated through a multi-condition coupling network, achieving a seamless transition from abstract language instructions to latent control variables. Subsequently, we design a hybrid attention-based fusion network to aggregate multi-modal information, in which the obtained composite control priori is deeply embedded to linearly modulate the intermediate fused features. To ensure the alignment between language instructions and control outcomes, we introduce a novel language-feature alignment loss, which constrains the consistency between feature-level gains and the composite control priori. Extensive experiments on publicly available datasets demonstrate that our RFC is robust against various composite degradations, particularly in highly challenging flare scenarios.
Abstract:Unified image fusion aims to integrate complementary information from multi-source images, enhancing image quality through a unified framework applicable to diverse fusion tasks. While treating all fusion tasks as a unified problem facilitates task-invariant knowledge sharing, it often overlooks task-specific characteristics, thereby limiting the overall performance. Existing general image fusion methods incorporate explicit task identification to enable adaptation to different fusion tasks. However, this dependence during inference restricts the model's generalization to unseen fusion tasks. To address these issues, we propose a novel unified image fusion framework named "TITA", which dynamically balances both Task-invariant Interaction and Task-specific Adaptation. For task-invariant interaction, we introduce the Interaction-enhanced Pixel Attention (IPA) module to enhance pixel-wise interactions for better multi-source complementary information extraction. For task-specific adaptation, the Operation-based Adaptive Fusion (OAF) module dynamically adjusts operation weights based on task properties. Additionally, we incorporate the Fast Adaptive Multitask Optimization (FAMO) strategy to mitigate the impact of gradient conflicts across tasks during joint training. Extensive experiments demonstrate that TITA not only achieves competitive performance compared to specialized methods across three image fusion scenarios but also exhibits strong generalization to unseen fusion tasks.
Abstract:This prospective study proposes CoMatch, a novel semi-dense image matcher with dynamic covisibility awareness and bilateral subpixel accuracy. Firstly, observing that modeling context interaction over the entire coarse feature map elicits highly redundant computation due to the neighboring representation similarity of tokens, a covisibility-guided token condenser is introduced to adaptively aggregate tokens in light of their covisibility scores that are dynamically estimated, thereby ensuring computational efficiency while improving the representational capacity of aggregated tokens simultaneously. Secondly, considering that feature interaction with massive non-covisible areas is distracting, which may degrade feature distinctiveness, a covisibility-assisted attention mechanism is deployed to selectively suppress irrelevant message broadcast from non-covisible reduced tokens, resulting in robust and compact attention to relevant rather than all ones. Thirdly, we find that at the fine-level stage, current methods adjust only the target view's keypoints to subpixel level, while those in the source view remain restricted at the coarse level and thus not informative enough, detrimental to keypoint location-sensitive usages. A simple yet potent fine correlation module is developed to refine the matching candidates in both source and target views to subpixel level, attaining attractive performance improvement. Thorough experimentation across an array of public benchmarks affirms CoMatch's promising accuracy, efficiency, and generalizability.
Abstract:Current image fusion methods struggle to address the composite degradations encountered in real-world imaging scenarios and lack the flexibility to accommodate user-specific requirements. In response to these challenges, we propose a controllable image fusion framework with language-vision prompts, termed ControlFusion, which adaptively neutralizes composite degradations. On the one hand, we develop a degraded imaging model that integrates physical imaging mechanisms, including the Retinex theory and atmospheric scattering principle, to simulate composite degradations, thereby providing potential for addressing real-world complex degradations from the data level. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features with degradation prompts, enabling our method to accommodate composite degradation of varying levels. Specifically, considering individual variations in quality perception of users, we incorporate a text encoder to embed user-specified degradation types and severity levels as degradation prompts. We also design a spatial-frequency collaborative visual adapter that autonomously perceives degradations in source images, thus eliminating the complete dependence on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly in countering real-world and compound degradations with various levels.
Abstract:Existing fusion methods are tailored for high-quality images but struggle with degraded images captured under harsh circumstances, thus limiting the practical potential of image fusion. This work presents a \textbf{D}egradation and \textbf{S}emantic \textbf{P}rior dual-guided framework for degraded image \textbf{Fusion} (\textbf{DSPFusion}), utilizing degradation priors and high-quality scene semantic priors restored via diffusion models to guide both information recovery and fusion in a unified model. In specific, it first individually extracts modality-specific degradation priors, while jointly capturing comprehensive low-quality semantic priors. Subsequently, a diffusion model is developed to iteratively restore high-quality semantic priors in a compact latent space, enabling our method to be over $20 \times$ faster than mainstream diffusion model-based image fusion schemes. Finally, the degradation priors and high-quality semantic priors are employed to guide information enhancement and aggregation via the dual-prior guidance and prior-guided fusion modules. Extensive experiments demonstrate that DSPFusion mitigates most typical degradations while integrating complementary context with minimal computational cost, greatly broadening the application scope of image fusion.