Abstract:Graph Neural Networks (GNNs) have demonstrated remarkable performance across various applications, yet they are vulnerable to sophisticated adversarial attacks, particularly node injection attacks. The success of such attacks heavily relies on their stealthiness, the ability to blend in with the original graph and evade detection. However, existing methods often achieve stealthiness by relying on indirect proxy metrics, lacking consideration for the fundamental characteristics of the injected content, or focusing only on imitating local structures, which leads to the problem of local myopia. To overcome these limitations, we propose a dual-constraint stealthy node injection framework, called Joint Alignment of Nodal and Universal Structures (JANUS). At the local level, we introduce a local feature manifold alignment strategy to achieve geometric consistency in the feature space. At the global level, we incorporate structured latent variables and maximize the mutual information with the generated structures, ensuring the injected structures are consistent with the semantic patterns of the original graph. We model the injection attack as a sequential decision process, which is optimized by a reinforcement learning agent. Experiments on multiple standard datasets demonstrate that the JANUS framework significantly outperforms existing methods in terms of both attack effectiveness and stealthiness.
Abstract:Retrieval-Augmented Generation (RAG) is a powerful technique for enhancing Large Language Models (LLMs) with external, up-to-date knowledge. Graph RAG has emerged as an advanced paradigm that leverages graph-based knowledge structures to provide more coherent and contextually rich answers. However, the move from plain document retrieval to structured graph traversal introduces new, under-explored privacy risks. This paper investigates the data extraction vulnerabilities of the Graph RAG systems. We design and execute tailored data extraction attacks to probe their susceptibility to leaking both raw text and structured data, such as entities and their relationships. Our findings reveal a critical trade-off: while Graph RAG systems may reduce raw text leakage, they are significantly more vulnerable to the extraction of structured entity and relationship information. We also explore potential defense mechanisms to mitigate these novel attack surfaces. This work provides a foundational analysis of the unique privacy challenges in Graph RAG and offers insights for building more secure systems.
Abstract:Generative modelling has seen significant advances through simulation-free paradigms such as Flow Matching, and in particular, the MeanFlow framework, which replaces instantaneous velocity fields with average velocities to enable efficient single-step sampling. In this work, we introduce a theoretical study on Second-Order MeanFlow, a novel extension that incorporates average acceleration fields into the MeanFlow objective. We first establish the feasibility of our approach by proving that the average acceleration satisfies a generalized consistency condition analogous to first-order MeanFlow, thereby supporting stable, one-step sampling and tractable loss functions. We then characterize its expressivity via circuit complexity analysis, showing that under mild assumptions, the Second-Order MeanFlow sampling process can be implemented by uniform threshold circuits within the $\mathsf{TC}^0$ class. Finally, we derive provably efficient criteria for scalable implementation by leveraging fast approximate attention computations: we prove that attention operations within the Second-Order MeanFlow architecture can be approximated to within $1/\mathrm{poly}(n)$ error in time $n^{2+o(1)}$. Together, these results lay the theoretical foundation for high-order flow matching models that combine rich dynamics with practical sampling efficiency.
Abstract:Text-to-video (T2V) models have shown remarkable performance in generating visually reasonable scenes, while their capability to leverage world knowledge for ensuring semantic consistency and factual accuracy remains largely understudied. In response to this challenge, we propose T2VWorldBench, the first systematic evaluation framework for evaluating the world knowledge generation abilities of text-to-video models, covering 6 major categories, 60 subcategories, and 1,200 prompts across a wide range of domains, including physics, nature, activity, culture, causality, and object. To address both human preference and scalable evaluation, our benchmark incorporates both human evaluation and automated evaluation using vision-language models (VLMs). We evaluated the 10 most advanced text-to-video models currently available, ranging from open source to commercial models, and found that most models are unable to understand world knowledge and generate truly correct videos. These findings point out a critical gap in the capability of current text-to-video models to leverage world knowledge, providing valuable research opportunities and entry points for constructing models with robust capabilities for commonsense reasoning and factual generation.
Abstract:Large Reasoning Models (LRMs) have become a central focus in today's large language model (LLM) research, where models are designed to output a step-by-step thinking process before arriving at a final answer to handle complex reasoning tasks. Despite their promise, recent empirical studies (e.g., [Shojaee et al., 2025] from Apple) suggest that this thinking process may not actually enhance reasoning ability, where LLMs without explicit reasoning actually outperform LRMs on tasks with low or high complexity. In this work, we revisit these findings and investigate whether the limitations of LRMs persist when tool augmentations are introduced. We incorporate two types of tools, Python interpreters and scratchpads, and evaluate three representative LLMs and their LRM counterparts on Apple's benchmark reasoning puzzles. Our results show that, with proper tool use, LRMs consistently outperform their non-reasoning counterparts across all levels of task complexity. These findings challenge the recent narrative that reasoning is an illusion and highlight the potential of tool-augmented LRMs for solving complex problems.
Abstract:Large language models (LLMs) have shown great potential in decision-making due to the vast amount of knowledge stored within the models. However, these pre-trained models are prone to lack reasoning abilities and are difficult to adapt to new environments, further hindering their application to complex real-world tasks. To address these challenges, inspired by the human cognitive process, we propose Causal-aware LLMs, which integrate the structural causal model (SCM) into the decision-making process to model, update, and utilize structured knowledge of the environment in a ``learning-adapting-acting" paradigm. Specifically, in the learning stage, we first utilize an LLM to extract the environment-specific causal entities and their causal relations to initialize a structured causal model of the environment. Subsequently,in the adapting stage, we update the structured causal model through external feedback about the environment, via an idea of causal intervention. Finally, in the acting stage, Causal-aware LLMs exploit structured causal knowledge for more efficient policy-making through the reinforcement learning agent. The above processes are performed iteratively to learn causal knowledge, ultimately enabling the causal-aware LLMs to achieve a more accurate understanding of the environment and make more efficient decisions. Experimental results across 22 diverse tasks within the open-world game ``Crafter" validate the effectiveness of our proposed method.
Abstract:Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Abstract:Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Abstract:Large-scale models trained on extensive datasets have become the standard due to their strong generalizability across diverse tasks. In-context learning (ICL), widely used in natural language processing, leverages these models by providing task-specific prompts without modifying their parameters. This paradigm is increasingly being adapted for computer vision, where models receive an input-output image pair, known as an in-context pair, alongside a query image to illustrate the desired output. However, the success of visual ICL largely hinges on the quality of these prompts. To address this, we propose Enhanced Instruct Me More (E-InMeMo), a novel approach that incorporates learnable perturbations into in-context pairs to optimize prompting. Through extensive experiments on standard vision tasks, E-InMeMo demonstrates superior performance over existing state-of-the-art methods. Notably, it improves mIoU scores by 7.99 for foreground segmentation and by 17.04 for single object detection when compared to the baseline without learnable prompts. These results highlight E-InMeMo as a lightweight yet effective strategy for enhancing visual ICL. Code is publicly available at: https://github.com/Jackieam/E-InMeMo
Abstract:When model predictions inform downstream decision making, a natural question is under what conditions can the decision-makers simply respond to the predictions as if they were the true outcomes. Calibration suffices to guarantee that simple best-response to predictions is optimal. However, calibration for high-dimensional prediction outcome spaces requires exponential computational and statistical complexity. The recent relaxation known as decision calibration ensures the optimality of the simple best-response rule while requiring only polynomial sample complexity in the dimension of outcomes. However, known results on calibration and decision calibration crucially rely on linear loss functions for establishing best-response optimality. A natural approach to handle nonlinear losses is to map outcomes $y$ into a feature space $\phi(y)$ of dimension $m$, then approximate losses with linear functions of $\phi(y)$. Unfortunately, even simple classes of nonlinear functions can demand exponentially large or infinite feature dimensions $m$. A key open problem is whether it is possible to achieve decision calibration with sample complexity independent of~$m$. We begin with a negative result: even verifying decision calibration under standard deterministic best response inherently requires sample complexity polynomial in~$m$. Motivated by this lower bound, we investigate a smooth version of decision calibration in which decision-makers follow a smooth best-response. This smooth relaxation enables dimension-free decision calibration algorithms. We introduce algorithms that, given $\mathrm{poly}(|A|,1/\epsilon)$ samples and any initial predictor~$p$, can efficiently post-process it to satisfy decision calibration without worsening accuracy. Our algorithms apply broadly to function classes that can be well-approximated by bounded-norm functions in (possibly infinite-dimensional) separable RKHS.