Abstract:Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Abstract:Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Abstract:Recent advancements in Transformer-based architectures have led to impressive breakthroughs in natural language processing tasks, with models such as GPT-4, Claude, and Gemini demonstrating human-level reasoning abilities. However, despite their high performance, concerns remain about the inherent limitations of these models, especially when it comes to learning basic logical functions. While complexity-theoretic analyses indicate that Transformers can represent simple logic functions (e.g., $\mathsf{AND}$, $\mathsf{OR}$, and majority gates) by its nature of belonging to the $\mathsf{TC}^0$ class, these results assume ideal parameter settings and do not account for the constraints imposed by gradient descent-based training methods. In this work, we investigate whether Transformers can truly learn simple majority functions when trained using gradient-based methods. We focus on a simplified variant of the Transformer architecture and consider both $n=\mathrm{poly}(d)$ and $n=\exp(\Omega(d))$ number of training samples, where each sample is a $d$-size binary string paired with the output of a basic majority function. Our analysis demonstrates that even after $\mathrm{poly}(d)$ gradient queries, the generalization error of the Transformer model still remains substantially large, growing exponentially with $d$. This work highlights fundamental optimization challenges in training Transformers for the simplest logical reasoning tasks and provides new insights into their theoretical limitations.
Abstract:Generative models have driven significant progress in a variety of AI tasks, including text-to-video generation, where models like Video LDM and Stable Video Diffusion can produce realistic, movie-level videos from textual instructions. Despite these advances, current text-to-video models still face fundamental challenges in reliably following human commands, particularly in adhering to simple numerical constraints. In this work, we present T2VCountBench, a specialized benchmark aiming at evaluating the counting capability of SOTA text-to-video models as of 2025. Our benchmark employs rigorous human evaluations to measure the number of generated objects and covers a diverse range of generators, covering both open-source and commercial models. Extensive experiments reveal that all existing models struggle with basic numerical tasks, almost always failing to generate videos with an object count of 9 or fewer. Furthermore, our comprehensive ablation studies explore how factors like video style, temporal dynamics, and multilingual inputs may influence counting performance. We also explore prompt refinement techniques and demonstrate that decomposing the task into smaller subtasks does not easily alleviate these limitations. Our findings highlight important challenges in current text-to-video generation and provide insights for future research aimed at improving adherence to basic numerical constraints.
Abstract:A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
Abstract:The key-value (KV) cache in autoregressive transformers presents a significant bottleneck during inference, which restricts the context length capabilities of large language models (LLMs). While previous work analyzes the fundamental space complexity barriers in standard attention mechanism [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a novel reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. In the low dimensional regime where $d = o(\log n)$, we analyze the theoretical bounds of the space complexity as well. Overall, our work provides a theoretical foundation for us to understand the compression-expressivity tradeoff in tensor attention mechanisms and offers more perspectives in developing more memory-efficient transformer architectures.
Abstract:Flow matching has emerged as a powerful framework for generative modeling, offering computational advantages over diffusion models by leveraging deterministic Ordinary Differential Equations (ODEs) instead of stochastic dynamics. While prior work established the worst case optimality of standard flow matching under Wasserstein distances, the theoretical guarantees for higher-order flow matching - which incorporates acceleration terms to refine sample trajectories - remain unexplored. In this paper, we bridge this gap by proving that higher-order flow matching preserves worst case optimality as a distribution estimator. We derive upper bounds on the estimation error for second-order flow matching, demonstrating that the convergence rates depend polynomially on the smoothness of the target distribution (quantified via Besov spaces) and key parameters of the ODE dynamics. Our analysis employs neural network approximations with carefully controlled depth, width, and sparsity to bound acceleration errors across both small and large time intervals, ultimately unifying these results into a general worst case optimal bound for all time steps.
Abstract:Flow Matching and Transformer architectures have demonstrated remarkable performance in image generation tasks, with recent work FlowAR [Ren et al., 2024] synergistically integrating both paradigms to advance synthesis fidelity. However, current FlowAR implementations remain constrained by first-order trajectory modeling during the generation process. This paper introduces a novel framework that systematically enhances flow autoregressive transformers through high-order supervision. We provide theoretical analysis and empirical evaluation showing that our High-Order FlowAR (HOFAR) demonstrates measurable improvements in generation quality compared to baseline models. The proposed approach advances the understanding of flow-based autoregressive modeling by introducing a systematic framework for analyzing trajectory dynamics through high-order expansion.
Abstract:Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Abstract:Recently, Large Language Models (LLMs) have achieved remarkable success. A key factor behind this success is the scaling law observed by OpenAI. Specifically, for models with Transformer architecture, the test loss exhibits a power-law relationship with model size, dataset size, and the amount of computation used in training, demonstrating trends that span more than seven orders of magnitude. This scaling law challenges traditional machine learning wisdom, notably the Oscar Scissors principle, which suggests that an overparametrized algorithm will overfit the training datasets, resulting in poor test performance. Recent research has also identified the scaling law in simpler machine learning contexts, such as linear regression. However, fully explaining the scaling law in large practical models remains an elusive goal. In this work, we advance our understanding by demonstrating that the scaling law phenomenon extends to multiple regression and kernel regression settings, which are significantly more expressive and powerful than linear methods. Our analysis provides deeper insights into the scaling law, potentially enhancing our understanding of LLMs.