Alert button
Picture for Xiyang Liu

Xiyang Liu

Alert button

Prototypes-oriented Transductive Few-shot Learning with Conditional Transport

Aug 06, 2023
Long Tian, Jingyi Feng, Wenchao Chen, Xiaoqiang Chai, Liming Wang, Xiyang Liu, Bo Chen

Transductive Few-Shot Learning (TFSL) has recently attracted increasing attention since it typically outperforms its inductive peer by leveraging statistics of query samples. However, previous TFSL methods usually encode uniform prior that all the classes within query samples are equally likely, which is biased in imbalanced TFSL and causes severe performance degradation. Given this pivotal issue, in this work, we propose a novel Conditional Transport (CT) based imbalanced TFSL model called {\textbf P}rototypes-oriented {\textbf U}nbiased {\textbf T}ransfer {\textbf M}odel (PUTM) to fully exploit unbiased statistics of imbalanced query samples, which employs forward and backward navigators as transport matrices to balance the prior of query samples per class between uniform and adaptive data-driven distributions. For efficiently transferring statistics learned by CT, we further derive a closed form solution to refine prototypes based on MAP given the learned navigators. The above two steps of discovering and transferring unbiased statistics follow an iterative manner, formulating our EM-based solver. Experimental results on four standard benchmarks including miniImageNet, tieredImageNet, CUB, and CIFAR-FS demonstrate superiority of our model in class-imbalanced generalization.

* Accepted by ICCV2023 
Viaarxiv icon

Near Optimal Private and Robust Linear Regression

Jan 30, 2023
Xiyang Liu, Prateek Jain, Weihao Kong, Sewoong Oh, Arun Sai Suggala

Figure 1 for Near Optimal Private and Robust Linear Regression
Figure 2 for Near Optimal Private and Robust Linear Regression
Figure 3 for Near Optimal Private and Robust Linear Regression
Figure 4 for Near Optimal Private and Robust Linear Regression

We study the canonical statistical estimation problem of linear regression from $n$ i.i.d.~examples under $(\varepsilon,\delta)$-differential privacy when some response variables are adversarially corrupted. We propose a variant of the popular differentially private stochastic gradient descent (DP-SGD) algorithm with two innovations: a full-batch gradient descent to improve sample complexity and a novel adaptive clipping to guarantee robustness. When there is no adversarial corruption, this algorithm improves upon the existing state-of-the-art approach and achieves a near optimal sample complexity. Under label-corruption, this is the first efficient linear regression algorithm to guarantee both $(\varepsilon,\delta)$-DP and robustness. Synthetic experiments confirm the superiority of our approach.

Viaarxiv icon

Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes

Jan 16, 2023
Mohammad Vahid Jamali, Xiyang Liu, Ashok Vardhan Makkuva, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Figure 1 for Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes
Figure 2 for Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes
Figure 3 for Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes
Figure 4 for Machine Learning-Aided Efficient Decoding of Reed-Muller Subcodes

Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels and have a comparable performance to that of random codes in terms of scaling laws. However, they lack efficient decoders with performance close to that of a maximum-likelihood decoder for general code parameters. Also, they only admit limited sets of rates. In this paper, we focus on subcodes of RM codes with flexible rates. We first extend the recently-introduced recursive projection-aggregation (RPA) decoding algorithm to RM subcodes. To lower the complexity of our decoding algorithm, referred to as subRPA, we investigate different approaches to prune the projections. Next, we derive the soft-decision based version of our algorithm, called soft-subRPA, that not only improves upon the performance of subRPA but also enables a differentiable decoding algorithm. Building upon the soft-subRPA algorithm, we then provide a framework for training a machine learning (ML) model to search for \textit{good} sets of projections that minimize the decoding error rate. Training our ML model enables achieving very close to the performance of full-projection decoding with a significantly smaller number of projections. We also show that the choice of the projections in decoding RM subcodes matters significantly, and our ML-aided projection pruning scheme is able to find a \textit{good} selection, i.e., with negligible performance degradation compared to the full-projection case, given a reasonable number of projections.

* arXiv admin note: substantial text overlap with arXiv:2102.01671 
Viaarxiv icon

DP-PCA: Statistically Optimal and Differentially Private PCA

May 27, 2022
Xiyang Liu, Weihao Kong, Prateek Jain, Sewoong Oh

Figure 1 for DP-PCA: Statistically Optimal and Differentially Private PCA

We study the canonical statistical task of computing the principal component from $n$ i.i.d.~data in $d$ dimensions under $(\varepsilon,\delta)$-differential privacy. Although extensively studied in literature, existing solutions fall short on two key aspects: ($i$) even for Gaussian data, existing private algorithms require the number of samples $n$ to scale super-linearly with $d$, i.e., $n=\Omega(d^{3/2})$, to obtain non-trivial results while non-private PCA requires only $n=O(d)$, and ($ii$) existing techniques suffer from a non-vanishing error even when the randomness in each data point is arbitrarily small. We propose DP-PCA, which is a single-pass algorithm that overcomes both limitations. It is based on a private minibatch gradient ascent method that relies on {\em private mean estimation}, which adds minimal noise required to ensure privacy by adapting to the variance of a given minibatch of gradients. For sub-Gaussian data, we provide nearly optimal statistical error rates even for $n=\tilde O(d)$. Furthermore, we provide a lower bound showing that sub-Gaussian style assumption is necessary in obtaining the optimal error rate.

Viaarxiv icon

Differential privacy and robust statistics in high dimensions

Nov 12, 2021
Xiyang Liu, Weihao Kong, Sewoong Oh

We introduce a universal framework for characterizing the statistical efficiency of a statistical estimation problem with differential privacy guarantees. Our framework, which we call High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. Gluing all these together is the concept of resilience, which is central to robust statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis, and the success probability analysis of the test step in Propose-Test-Release. The key insight is that if we design an exponential mechanism that accesses the data only via one-dimensional robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience, we can provide tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to a given instance of a statistical estimation problem and demonstrate it on canonical problems of mean estimation, linear regression, covariance estimation, and principal component analysis. We introduce a general utility analysis technique that proves that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.

Viaarxiv icon

KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning

Aug 29, 2021
Ashok Vardhan Makkuva, Xiyang Liu, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Figure 1 for KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning
Figure 2 for KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning
Figure 3 for KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning
Figure 4 for KO codes: Inventing Nonlinear Encoding and Decoding for Reliable Wireless Communication via Deep-learning

Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit real symbols (bypassing modulation) and yet possess an efficient, high performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the {\bf K}ronecker {\bf O}peration (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures. The code is available at \href{https://github.com/deepcomm/KOcodes}{https://github.com/deepcomm/KOcodes}

Viaarxiv icon

Robust and Differentially Private Mean Estimation

Feb 18, 2021
Xiyang Liu, Weihao Kong, Sham Kakade, Sewoong Oh

Figure 1 for Robust and Differentially Private Mean Estimation
Figure 2 for Robust and Differentially Private Mean Estimation
Figure 3 for Robust and Differentially Private Mean Estimation

Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices, initiating an extensive line of research in accurately and privately releasing statistics of a database. An increasing number of such databases consist of data from multiple sources, not all of which can be trusted. This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data. Despite the significance of designing algorithms that guarantee privacy and robustness (to a fraction of data being corrupted) simultaneously, even the simplest questions remain open. For the canonical problem of estimating the mean from i.i.d. samples, we introduce the first efficient algorithm that achieves both privacy and robustness for a wide range of distributions. This achieves optimal accuracy matching the known lower bounds for robustness, but the sample complexity has a factor of $d^{1/2}$ gap from known lower bounds. We further show that this gap is due to the computational efficiency; we introduce the first family of algorithms that close this gap but takes exponential time. The innovation is in exploiting resilience (a key property in robust estimation) to adaptively bound the sensitivity and improve privacy.

* 55 pages, 1 figure 
Viaarxiv icon

MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

Sep 11, 2020
Xiyang Liu, Yixi Xu, Sumit Mukherjee, Juan Lavista Ferres

Figure 1 for MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models
Figure 2 for MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models
Figure 3 for MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models
Figure 4 for MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

Generative models are widely used for publishing synthetic datasets. Despite practical successes, recent works have shown some generative models may leak privacy of the data that have been used during training. Membership inference attacks aim to determine whether a sample has been used in the training set given query access to the model API. Despite recent work in this area, many of the attacks designed against generative models require very specific attributes from the learned models (e.g. discriminator scores, generated images, etc.). Furthermore, many of these attacks are heuristic and do not provide effective bounds for privacy loss. In this work, we formally study the membership privacy leakage risk of generative models. Specifically, we formulate membership privacy as a statistical divergence between training samples and hold-out samples, and propose sample-based methods to estimate this divergence. Unlike previous works, our proposed metric and estimators make realistic and flexible assumptions. First, we use a generalizable metric as an alternative to accuracy, since practical model training often leads to imbalanced train/hold-out splits. Second, our estimators are capable of estimating statistical divergence using any scalar or vector valued attributes from the learned model instead of very specific attributes. Furthermore, we show a connection to differential privacy. This allows our proposed estimators to provide a data-driven certificate to understand the privacy budget needed for differentially private generative models. We demonstrate the utility of our framework through experimental demonstrations on different generative models using various model attributes yielding some new insights about membership leakage and vulnerabilities of models.

Viaarxiv icon

Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting

May 13, 2020
Xiyang Liu, Jie Yang, Wenrui Ding

Figure 1 for Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting
Figure 2 for Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting
Figure 3 for Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting
Figure 4 for Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting

The crowd counting task aims at estimating the number of people located in an image or a frame from videos. Existing methods widely adopt density maps as the training targets to optimize the point-to-point loss. While in testing phase, we only focus on the differences between the crowd numbers and the global summation of density maps, which indicate the inconsistency between the training targets and the evaluation criteria. To solve this problem, we introduce a new target, named local counting map (LCM), to obtain more accurate results than density map based approaches. Moreover, we also propose an adaptive mixture regression framework with three modules in a coarse-to-fine manner to further improve the precision of the crowd estimation: scale-aware module (SAM), mixture regression module (MRM) and adaptive soft interval module (ASIM). Specifically, SAM fully utilizes the context and multi-scale information from different convolutional features; MRM and ASIM perform more precise counting regression on local patches of images. Compared with current methods, the proposed method reports better performances on the typical datasets. The source code is available at https://github.com/xiyang1012/Local-Crowd-Counting.

Viaarxiv icon