Executing contact-rich manipulation tasks necessitates the fusion of tactile and visual feedback. However, the distinct nature of these modalities poses significant challenges. In this paper, we introduce a system that leverages visual and tactile sensory inputs to enable dexterous in-hand manipulation. Specifically, we propose Robot Synesthesia, a novel point cloud-based tactile representation inspired by human tactile-visual synesthesia. This approach allows for the simultaneous and seamless integration of both sensory inputs, offering richer spatial information and facilitating better reasoning about robot actions. The method, trained in a simulated environment and then deployed to a real robot, is applicable to various in-hand object rotation tasks. Comprehensive ablations are performed on how the integration of vision and touch can improve reinforcement learning and Sim2Real performance. Our project page is available at https://yingyuan0414.github.io/visuotactile/ .
Adapting pre-trained language models (PLMs) for time-series text classification amidst evolving domain shifts (EDS) is critical for maintaining accuracy in applications like stance detection. This study benchmarks the effectiveness of evolving domain adaptation (EDA) strategies, notably self-training, domain-adversarial training, and domain-adaptive pretraining, with a focus on an incremental self-training method. Our analysis across various datasets reveals that this incremental method excels at adapting PLMs to EDS, outperforming traditional domain adaptation techniques. These findings highlight the importance of continually updating PLMs to ensure their effectiveness in real-world applications, paving the way for future research into PLM robustness against the natural temporal evolution of language.
Can a quadrupedal robot perform bipedal motions like humans? Although developing human-like behaviors is more often studied on costly bipedal robot platforms, we present a solution over a lightweight quadrupedal robot that unlocks the agility of the quadruped in an upright standing pose and is capable of a variety of human-like motions. Our framework is with a bi-level structure. At the low level is a motion-conditioned control policy that allows the quadrupedal robot to track desired base and front limb movements while balancing on two hind feet. The policy is commanded by a high-level motion generator that gives trajectories of parameterized human-like motions to the robot from multiple modalities of human input. We for the first time demonstrate various bipedal motions on a quadrupedal robot, and showcase interesting human-robot interaction modes including mimicking human videos, following natural language instructions, and physical interaction.
Agents built with large language models (LLMs) have recently achieved great advancements. However, most of the efforts focus on single-agent or cooperative settings, leaving more general multi-agent environments underexplored. We propose a new framework powered by reinforcement learning (RL) to develop strategic language agents, i.e., LLM-based agents with strategic thinking ability, for a popular language game, Werewolf. Werewolf is a social deduction game with hidden roles that involves both cooperation and competition and emphasizes deceptive communication and diverse gameplay. Our agent tackles this game by first using LLMs to reason about potential deceptions and generate a set of strategically diverse actions. Then an RL policy, which selects an action from the candidates, is learned by population-based training to enhance the agents' decision-making ability. By combining LLMs with the RL policy, our agent produces a variety of emergent strategies, achieves the highest win rate against other LLM-based agents, and stays robust against adversarial human players in the Werewolf game.
In complex reinforcement learning (RL) problems, policies with similar rewards may have substantially different behaviors. It remains a fundamental challenge to optimize rewards while also discovering as many diverse strategies as possible, which can be crucial in many practical applications. Our study examines two design choices for tackling this challenge, i.e., diversity measure and computation framework. First, we find that with existing diversity measures, visually indistinguishable policies can still yield high diversity scores. To accurately capture the behavioral difference, we propose to incorporate the state-space distance information into the diversity measure. In addition, we examine two common computation frameworks for this problem, i.e., population-based training (PBT) and iterative learning (ITR). We show that although PBT is the precise problem formulation, ITR can achieve comparable diversity scores with higher computation efficiency, leading to improved solution quality in practice. Based on our analysis, we further combine ITR with two tractable realizations of the state-distance-based diversity measures and develop a novel diversity-driven RL algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), with provable convergence properties. We empirically examine SIPO across three domains from robot locomotion to multi-agent games. In all of our testing environments, SIPO consistently produces strategically diverse and human-interpretable policies that cannot be discovered by existing baselines.
The increasing size of large language models has posed challenges for deployment and raised concerns about environmental impact due to high energy consumption. In this work, we introduce BitNet, a scalable and stable 1-bit Transformer architecture designed for large language models. Specifically, we introduce BitLinear as a drop-in replacement of the nn.Linear layer in order to train 1-bit weights from scratch. Experimental results on language modeling show that BitNet achieves competitive performance while substantially reducing memory footprint and energy consumption, compared to state-of-the-art 8-bit quantization methods and FP16 Transformer baselines. Furthermore, BitNet exhibits a scaling law akin to full-precision Transformers, suggesting its potential for effective scaling to even larger language models while maintaining efficiency and performance benefits.
Learning Nash equilibrium (NE) in complex zero-sum games with multi-agent reinforcement learning (MARL) can be extremely computationally expensive. Curriculum learning is an effective way to accelerate learning, but an under-explored dimension for generating a curriculum is the difficulty-to-learn of the subgames -- games induced by starting from a specific state. In this work, we present a novel subgame curriculum learning framework for zero-sum games. It adopts an adaptive initial state distribution by resetting agents to some previously visited states where they can quickly learn to improve performance. Building upon this framework, we derive a subgame selection metric that approximates the squared distance to NE values and further adopt a particle-based state sampler for subgame generation. Integrating these techniques leads to our new algorithm, Subgame Automatic Curriculum Learning (SACL), which is a realization of the subgame curriculum learning framework. SACL can be combined with any MARL algorithm such as MAPPO. Experiments in the particle-world environment and Google Research Football environment show SACL produces much stronger policies than baselines. In the challenging hide-and-seek quadrant environment, SACL produces all four emergent stages and uses only half the samples of MAPPO with self-play. The project website is at https://sites.google.com/view/sacl-rl.
Self-play (SP) is a popular multi-agent reinforcement learning (MARL) framework for solving competitive games, where each agent optimizes policy by treating others as part of the environment. Despite the empirical successes, the theoretical properties of SP-based methods are limited to two-player zero-sum games. However, for mixed cooperative-competitive games where agents on the same team need to cooperate with each other, we can show a simple counter-example where SP-based methods cannot converge to a global Nash equilibrium (NE) with high probability. Alternatively, Policy-Space Response Oracles (PSRO) is an iterative framework for learning NE, where the best responses w.r.t. previous policies are learned in each iteration. PSRO can be directly extended to mixed cooperative-competitive settings by jointly learning team best responses with all convergence properties unchanged. However, PSRO requires repeatedly training joint policies from scratch till convergence, which makes it hard to scale to complex games. In this work, we develop a novel algorithm, Fictitious Cross-Play (FXP), which inherits the benefits from both frameworks. FXP simultaneously trains an SP-based main policy and a counter population of best response policies. The main policy is trained by fictitious self-play and cross-play against the counter population, while the counter policies are trained as the best responses to the main policy's past versions. We validate our method in matrix games and show that FXP converges to global NEs while SP methods fail. We also conduct experiments in a gridworld domain, where FXP achieves higher Elo ratings and lower exploitabilities than baselines, and a more challenging football game, where FXP defeats SOTA models with over 94% win rate.
In this work, we introduce OmniDrones, an efficient and flexible platform tailored for reinforcement learning in drone control, built on Nvidia's Omniverse Isaac Sim. It employs a bottom-up design approach that allows users to easily design and experiment with various application scenarios on top of GPU-parallelized simulations. It also offers a range of benchmark tasks, presenting challenges ranging from single-drone hovering to over-actuated system tracking. In summary, we propose an open-sourced drone simulation platform, equipped with an extensive suite of tools for drone learning. It includes 4 drone models, 5 sensor modalities, 4 control modes, over 10 benchmark tasks, and a selection of widely used RL baselines. To showcase the capabilities of OmniDrones and to support future research, we also provide preliminary results on these benchmark tasks. We hope this platform will encourage further studies on applying RL to practical drone systems.
Deep learning models have a risk of utilizing spurious clues to make predictions, such as recognizing actions based on the background scene. This issue can severely degrade the open-set action recognition performance when the testing samples have different scene distributions from the training samples. To mitigate this problem, we propose a novel method, called Scene-debiasing Open-set Action Recognition (SOAR), which features an adversarial scene reconstruction module and an adaptive adversarial scene classification module. The former prevents the decoder from reconstructing the video background given video features, and thus helps reduce the background information in feature learning. The latter aims to confuse scene type classification given video features, with a specific emphasis on the action foreground, and helps to learn scene-invariant information. In addition, we design an experiment to quantify the scene bias. The results indicate that the current open-set action recognizers are biased toward the scene, and our proposed SOAR method better mitigates such bias. Furthermore, our extensive experiments demonstrate that our method outperforms state-of-the-art methods, and the ablation studies confirm the effectiveness of our proposed modules.