Abstract:Vision-language-action (VLA) models trained on large-scale internet data and robot demonstrations have the potential to serve as generalist robot policies. However, despite their large-scale training, VLAs are often brittle to task-irrelevant visual details such as distractor objects or background colors. We introduce Bring Your Own VLA (BYOVLA): a run-time intervention scheme that (1) dynamically identifies regions of the input image that the model is sensitive to, and (2) minimally alters task-irrelevant regions to reduce the model's sensitivity using automated image editing tools. Our approach is compatible with any off the shelf VLA without model fine-tuning or access to the model's weights. Hardware experiments on language-instructed manipulation tasks demonstrate that BYOVLA enables state-of-the-art VLA models to nearly retain their nominal performance in the presence of distractor objects and backgrounds, which otherwise degrade task success rates by up to 40%. Website with additional information, videos, and code: https://aasherh.github.io/byovla/ .
Abstract:We introduce Diffusion Policy Policy Optimization, DPPO, an algorithmic framework including best practices for fine-tuning diffusion-based policies (e.g. Diffusion Policy) in continuous control and robot learning tasks using the policy gradient (PG) method from reinforcement learning (RL). PG methods are ubiquitous in training RL policies with other policy parameterizations; nevertheless, they had been conjectured to be less efficient for diffusion-based policies. Surprisingly, we show that DPPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks compared to other RL methods for diffusion-based policies and also compared to PG fine-tuning of other policy parameterizations. Through experimental investigation, we find that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization, leading to structured and on-manifold exploration, stable training, and strong policy robustness. We further demonstrate the strengths of DPPO in a range of realistic settings, including simulated robotic tasks with pixel observations, and via zero-shot deployment of simulation-trained policies on robot hardware in a long-horizon, multi-stage manipulation task. Website with code: diffusion-ppo.github.io
Abstract:We consider the problem of Embodied Question Answering (EQA), which refers to settings where an embodied agent such as a robot needs to actively explore an environment to gather information until it is confident about the answer to a question. In this work, we leverage the strong semantic reasoning capabilities of large vision-language models (VLMs) to efficiently explore and answer such questions. However, there are two main challenges when using VLMs in EQA: they do not have an internal memory for mapping the scene to be able to plan how to explore over time, and their confidence can be miscalibrated and can cause the robot to prematurely stop exploration or over-explore. We propose a method that first builds a semantic map of the scene based on depth information and via visual prompting of a VLM - leveraging its vast knowledge of relevant regions of the scene for exploration. Next, we use conformal prediction to calibrate the VLM's question answering confidence, allowing the robot to know when to stop exploration - leading to a more calibrated and efficient exploration strategy. To test our framework in simulation, we also contribute a new EQA dataset with diverse, realistic human-robot scenarios and scenes built upon the Habitat-Matterport 3D Research Dataset (HM3D). Both simulated and real robot experiments show our proposed approach improves the performance and efficiency over baselines that do no leverage VLM for exploration or do not calibrate its confidence. Webpage with experiment videos and code: https://explore-eqa.github.io/
Abstract:Rapid advances in perception have enabled large pre-trained models to be used out of the box for processing high-dimensional, noisy, and partial observations of the world into rich geometric representations (e.g., occupancy predictions). However, safe integration of these models onto robots remains challenging due to a lack of reliable performance in unfamiliar environments. In this work, we present a framework for rigorously quantifying the uncertainty of pre-trained perception models for occupancy prediction in order to provide end-to-end statistical safety assurances for navigation. We build on techniques from conformal prediction for producing a calibrated perception system that lightly processes the outputs of a pre-trained model while ensuring generalization to novel environments and robustness to distribution shifts in states when perceptual outputs are used in conjunction with a planner. The calibrated system can be used in combination with any safe planner to provide an end-to-end statistical assurance on safety in a new environment with a user-specified threshold $1-\epsilon$. We evaluate the resulting approach - which we refer to as Perceive with Confidence (PwC) - with experiments in simulation and on hardware where a quadruped robot navigates through indoor environments containing objects unseen during training or calibration. These experiments validate the safety assurances provided by PwC and demonstrate significant improvements in empirical safety rates compared to baselines.
Abstract:Large language models (LLMs) exhibit a wide range of promising capabilities -- from step-by-step planning to commonsense reasoning -- that may provide utility for robots, but remain prone to confidently hallucinated predictions. In this work, we present KnowNo, which is a framework for measuring and aligning the uncertainty of LLM-based planners such that they know when they don't know and ask for help when needed. KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion while minimizing human help in complex multi-step planning settings. Experiments across a variety of simulated and real robot setups that involve tasks with different modes of ambiguity (e.g., from spatial to numeric uncertainties, from human preferences to Winograd schemas) show that KnowNo performs favorably over modern baselines (which may involve ensembles or extensive prompt tuning) in terms of improving efficiency and autonomy, while providing formal assurances. KnowNo can be used with LLMs out of the box without model-finetuning, and suggests a promising lightweight approach to modeling uncertainty that can complement and scale with the growing capabilities of foundation models. Website: https://robot-help.github.io
Abstract:Generating human-like behavior on robots is a great challenge especially in dexterous manipulation tasks with robotic hands. Even in simulation with no sample constraints, scripting controllers is intractable due to high degrees of freedom, and manual reward engineering can also be hard and lead to non-realistic motions. Leveraging the recent progress on Reinforcement Learning from Human Feedback (RLHF), we propose a framework to learn a universal human prior using direct human preference feedback over videos, for efficiently tuning the RL policy on 20 dual-hand robot manipulation tasks in simulation, without a single human demonstration. One task-agnostic reward model is trained through iteratively generating diverse polices and collecting human preference over the trajectories; it is then applied for regularizing the behavior of polices in the fine-tuning stage. Our method empirically demonstrates more human-like behaviors on robot hands in diverse tasks including even unseen tasks, indicating its generalization capability.
Abstract:Simulation parameter settings such as contact models and object geometry approximations are critical to training robust robotic policies capable of transferring from simulation to real-world deployment. Previous approaches typically handcraft distributions over such parameters (domain randomization), or identify parameters that best match the dynamics of the real environment (system identification). However, there is often an irreducible gap between simulation and reality: attempting to match the dynamics between simulation and reality across all states and tasks may be infeasible and may not lead to policies that perform well in reality for a specific task. Addressing this issue, we propose AdaptSim, a new task-driven adaptation framework for sim-to-real transfer that aims to optimize task performance in target (real) environments -- instead of matching dynamics between simulation and reality. First, we meta-learn an adaptation policy in simulation using reinforcement learning for adjusting the simulation parameter distribution based on the current policy's performance in a target environment. We then perform iterative real-world adaptation by inferring new simulation parameter distributions for policy training, using a small amount of real data. We perform experiments in three robotic tasks: (1) swing-up of linearized double pendulum, (2) dynamic table-top pushing of a bottle, and (3) dynamic scooping of food pieces with a spatula. Our extensive simulation and hardware experiments demonstrate AdaptSim achieving 1-3x asymptotic performance and $\sim$2x real data efficiency when adapting to different environments, compared to methods based on Sys-ID and directly training the task policy in target environments.
Abstract:Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions.
Abstract:Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.
Abstract:We are motivated by the problem of performing failure prediction for safety-critical robotic systems with high-dimensional sensor observations (e.g., vision). Given access to a blackbox control policy (e.g., in the form of a neural network) and a dataset of training environments, we present an approach for synthesizing a failure predictor with guaranteed bounds on false-positive and false-negative errors. In order to achieve this, we utilize techniques from Probably Approximately Correct (PAC)-Bayes generalization theory. In addition, we present novel class-conditional bounds that allow us to tradeoff the relative rates of false-positive vs. false-negative errors. We propose algorithms that train failure predictors (that take as input the history of sensor observations) by minimizing our theoretical error bounds. We demonstrate the resulting approach using extensive simulation and hardware experiments for vision-based navigation with a drone and grasping objects with a robotic manipulator equipped with a wrist-mounted RGB-D camera. These experiments illustrate the ability of our approach to (1) provide strong bounds on failure prediction error rates (that closely match empirical error rates), and (2) improve safety by predicting failures.