Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Do Offline Metrics Predict Online Performance in Recommender Systems?

Nov 07, 2020
Karl Krauth, Sarah Dean, Alex Zhao, Wenshuo Guo, Mihaela Curmei, Benjamin Recht, Michael I. Jordan

Recommender systems operate in an inherently dynamical setting. Past recommendations influence future behavior, including which data points are observed and how user preferences change. However, experimenting in production systems with real user dynamics is often infeasible, and existing simulation-based approaches have limited scale. As a result, many state-of-the-art algorithms are designed to solve supervised learning problems, and progress is judged only by offline metrics. In this work we investigate the extent to which offline metrics predict online performance by evaluating eleven recommenders across six controlled simulated environments. We observe that offline metrics are correlated with online performance over a range of environments. However, improvements in offline metrics lead to diminishing returns in online performance. Furthermore, we observe that the ranking of recommenders varies depending on the amount of initial offline data available. We study the impact of adding exploration strategies, and observe that their effectiveness, when compared to greedy recommendation, is highly dependent on the recommendation algorithm. We provide the environments and recommenders described in this paper as Reclab: an extensible ready-to-use simulation framework at https://github.com/berkeley-reclab/RecLab.

  

Random Walks with Erasure: Diversifying Personalized Recommendations on Social and Information Networks

Feb 25, 2021
Bibek Paudel, Abraham Bernstein

Most existing personalization systems promote items that match a user's previous choices or those that are popular among similar users. This results in recommendations that are highly similar to the ones users are already exposed to, resulting in their isolation inside familiar but insulated information silos. In this context, we develop a novel recommendation framework with a goal of improving information diversity using a modified random walk exploration of the user-item graph. We focus on the problem of political content recommendation, while addressing a general problem applicable to personalization tasks in other social and information networks. For recommending political content on social networks, we first propose a new model to estimate the ideological positions for both users and the content they share, which is able to recover ideological positions with high accuracy. Based on these estimated positions, we generate diversified personalized recommendations using our new random-walk based recommendation algorithm. With experimental evaluations on large datasets of Twitter discussions, we show that our method based on \emph{random walks with erasure} is able to generate more ideologically diverse recommendations. Our approach does not depend on the availability of labels regarding the bias of users or content producers. With experiments on open benchmark datasets from other social and information networks, we also demonstrate the effectiveness of our method in recommending diverse long-tail items.

* Proceedings of the Web Conference 2021 (WWW '21), April 19--23, 2021, Ljubljana, Slovenia 
* Web Conference 2021 (WWW '21) 
  

Self-Supervised Reinforcement Learning for Recommender Systems

Jun 11, 2020
Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose

In session-based or sequential recommendation, it is important to consider a number of factors like long-term user engagement, multiple types of user-item interactions such as clicks, purchases etc. The current state-of-the-art supervised approaches fail to model them appropriately. Casting sequential recommendation task as a reinforcement learning (RL) problem is a promising direction. A major component of RL approaches is to train the agent through interactions with the environment. However, it is often problematic to train a recommender in an on-line fashion due to the requirement to expose users to irrelevant recommendations. As a result, learning the policy from logged implicit feedback is of vital importance, which is challenging due to the pure off-policy setting and lack of negative rewards (feedback). In this paper, we propose self-supervised reinforcement learning for sequential recommendation tasks. Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL. The RL part acts as a regularizer to drive the supervised layer focusing on specific rewards(e.g., recommending items which may lead to purchases rather than clicks) while the self-supervised layer with cross-entropy loss provides strong gradient signals for parameter updates. Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC). We integrate the proposed frameworks with four state-of-the-art recommendation models. Experimental results on two real-world datasets demonstrate the effectiveness of our approach.

* SIGIR2020 
  

A Comprehensive Review on Non-Neural Networks Collaborative Filtering Recommendation Systems

Jun 22, 2021
Carmel Wenga, Majirus Fansi, Sébastien Chabrier, Jean-Martial Mari, Alban Gabillon

Over the past two decades, recommender systems have attracted a lot of interest due to the explosion in the amount of data in online applications. A particular attention has been paid to collaborative filtering, which is the most widely used in applications that involve information recommendations. Collaborative filtering (CF) uses the known preference of a group of users to make predictions and recommendations about the unknown preferences of other users (recommendations are made based on the past behavior of users). First introduced in the 1990s, a wide variety of increasingly successful models have been proposed. Due to the success of machine learning techniques in many areas, there has been a growing emphasis on the application of such algorithms in recommendation systems. In this article, we present an overview of the CF approaches for recommender systems, their two main categories, and their evaluation metrics. We focus on the application of classical Machine Learning algorithms to CF recommender systems by presenting their evolution from their first use-cases to advanced Machine Learning models. We attempt to provide a comprehensive and comparative overview of CF systems (with python implementations) that can serve as a guideline for research and practice in this area.

* 29 pages, 7 tables and 2 figures 
  

Deconfounded Recommendation for Alleviating Bias Amplification

May 22, 2021
Wenjie Wang, Fuli Feng, Xiangnan He, Xiang Wang, Tat-Seng Chua

Recommender systems usually amplify the biases in the data. The model learned from historical interactions with imbalanced item distribution will amplify the imbalance by over-recommending items from the major groups. Addressing this issue is essential for a healthy ecosystem of recommendation in the long run. Existing works apply bias control to the ranking targets (e.g., calibration, fairness, and diversity), but ignore the true reason for bias amplification and trade-off the recommendation accuracy. In this work, we scrutinize the cause-effect factors for bias amplification, identifying the main reason lies in the confounder effect of imbalanced item distribution on user representation and prediction score. The existence of such confounder pushes us to go beyond merely modeling the conditional probability and embrace the causal modeling for recommendation. Towards this end, we propose a Deconfounded Recommender System (DecRS), which models the causal effect of user representation on the prediction score. The key to eliminating the impact of the confounder lies in backdoor adjustment, which is however difficult to do due to the infinite sample space of the confounder. For this challenge, we contribute an approximation operator for backdoor adjustment which can be easily plugged into most recommender models. Lastly, we devise an inference strategy to dynamically regulate backdoor adjustment according to user status. We instantiate DecRS on two representative models FM and NFM, and conduct extensive experiments over two benchmarks to validate the superiority of our proposed DecRS.

* Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discoveryand Data Mining (KDD 2021) 
  

Photos Are All You Need for Reciprocal Recommendation in Online Dating

Aug 26, 2021
James Neve, Ryan McConville

Recommender Systems are algorithms that predict a user's preference for an item. Reciprocal Recommenders are a subset of recommender systems, where the items in question are people, and the objective is therefore to predict a bidirectional preference relation. They are used in settings such as online dating services and social networks. In particular, images provided by users are a crucial part of user preference, and one that is not exploited much in the literature. We present a novel method of interpreting user image preference history and using this to make recommendations. We train a recurrent neural network to learn a user's preferences and make predictions of reciprocal preference relations that can be used to make recommendations that satisfy both users. We show that our proposed system achieves an F1 score of 0.87 when using only photographs to produce reciprocal recommendations on a large real world online dating dataset. Our system significantly outperforms on the state of the art in both content-based and collaborative filtering systems.

* 8 pages, 7 figures 
  

Item Recommendation Using User Feedback Data and Item Profile

Jun 28, 2022
Debashish Roy, Rajarshi Roy Chowdhury, Abdullah Bin Nasser, Afdhal Azmi, Marzieh Babaeianjelodar

Matrix factorization (MS) is a collaborative filtering (CF) based approach, which is widely used for recommendation systems (RS). In this research work, we deal with the content recommendation problem for users in a content management system (CMS) based on users' feedback data. The CMS is applied for publishing and pushing curated content to the employees of a company or an organization. Here, we have used the user's feedback data and content data to solve the content recommendation problem. We prepare individual user profiles and then generate recommendation results based on different categories, including Direct Interaction, Social Share, and Reading Statistics, of user's feedback data. Subsequently, we analyze the effect of the different categories on the recommendation results. The results have shown that different categories of feedback data have different impacts on recommendation accuracy. The best performance achieves if we include all types of data for the recommendation task. We also incorporate content similarity as a regularization term into an MF model for designing a hybrid model. Experimental results have shown that the proposed hybrid model demonstrates better performance compared with the traditional MF-based models.

* 8th Brunei International Conference on Engineering and Technology (BICET 2021) 
  
<<
20
21
22
23
24
25
26
27
28
29
30
31
32
>>