Real-world Super-Resolution (real-SR) methods focus on dealing with diverse real-world images and have attracted increasing attention in recent years. The key idea is to use a complex and high-order degradation model to mimic real-world degradations. Although they have achieved impressive results in various scenarios, they are faced with the obstacle of evaluation. Currently, these methods are only assessed by their average performance on a small set of degradation cases randomly selected from a large space, which fails to provide a comprehensive understanding of their overall performance and often yields biased results. To overcome the limitation in evaluation, we propose SEAL, a framework for systematic evaluation of real-SR. In particular, we cluster the extensive degradation space to create a set of representative degradation cases, which serves as a comprehensive test set. Next, we propose a coarse-to-fine evaluation protocol to measure the distributed and relative performance of real-SR methods on the test set. The protocol incorporates two new metrics: acceptance rate (AR) and relative performance ratio (RPR), derived from an acceptance line and an excellence line. Under SEAL, we benchmark existing real-SR methods, obtain new observations and insights into their performance, and develop a new strong baseline. We consider SEAL as the first step towards creating an unbiased and comprehensive evaluation platform, which can promote the development of real-SR.
Category information plays a crucial role in enhancing the quality and personalization of recommendations. Nevertheless, the availability of item category information is not consistently present, particularly in the context of ID-based recommendations. In this work, we propose an alternative approach to automatically learn and generate entity (i.e., user and item) categorical information at different levels of granularity, specifically for ID-based recommendation. Specifically, we devise a co-evolving vector quantization framework, namely COVE, which enables the simultaneous learning and refinement of code representation and entity embedding in an end-to-end manner, starting from the randomly initialized states. With its high adaptability, COVE can be easily integrated into existing recommendation models. We validate the effectiveness of COVE on various recommendation tasks including list completion, collaborative filtering, and click-through rate prediction, across different recommendation models. We will publish the code and data for other researchers to reproduce our work.
Stereo matching is a significant part in many computer vision tasks and driving-based applications. Recently cost volume-based methods have achieved great success benefiting from the rich geometry information in paired images. However, the redundancy of cost volume also interferes with the model training and limits the performance. To construct a more precise cost volume, we pioneeringly apply the diffusion model to stereo matching. Our method, termed DiffuVolume, considers the diffusion model as a cost volume filter, which will recurrently remove the redundant information from the cost volume. Two main designs make our method not trivial. Firstly, to make the diffusion model more adaptive to stereo matching, we eschew the traditional manner of directly adding noise into the image but embed the diffusion model into a task-specific module. In this way, we outperform the traditional diffusion stereo matching method by 22% EPE improvement and 240 times inference acceleration. Secondly, DiffuVolume can be easily embedded into any volume-based stereo matching network with boost performance but slight parameters rise (only 2%). By adding the DiffuVolume into well-performed methods, we outperform all the published methods on Scene Flow, KITTI2012, KITTI2015 benchmarks and zero-shot generalization setting. It is worth mentioning that the proposed model ranks 1st on KITTI 2012 leader board, 2nd on KITTI 2015 leader board since 15, July 2023.
Large pretrained language models (PLM) have become de facto news encoders in modern news recommender systems, due to their strong ability in comprehending textual content. These huge Transformer-based architectures, when finetuned on recommendation tasks, can greatly improve news recommendation performance. However, the PLM-based pretrain-finetune framework incurs high computational cost and energy consumption, primarily due to the extensive redundant processing of news encoding during each training epoch. In this paper, we propose the ``Only Encode Once'' framework for news recommendation (OLEO), by decoupling news representation learning from downstream recommendation task learning. The decoupled design makes content-based news recommender as green and efficient as id-based ones, leading to great reduction in computational cost and training resources. Extensive experiments show that our OLEO framework can reduce carbon emissions by up to 13 times compared with the state-of-the-art pretrain-finetune framework and maintain a competitive or even superior performance level. The source code is released for reproducibility.
Binarization of neural networks is a dominant paradigm in neural networks compression. The pioneering work BinaryConnect uses Straight Through Estimator (STE) to mimic the gradients of the sign function, but it also causes the crucial inconsistency problem. Most of the previous methods design different estimators instead of STE to mitigate it. However, they ignore the fact that when reducing the estimating error, the gradient stability will decrease concomitantly. These highly divergent gradients will harm the model training and increase the risk of gradient vanishing and gradient exploding. To fully take the gradient stability into consideration, we present a new perspective to the BNNs training, regarding it as the equilibrium between the estimating error and the gradient stability. In this view, we firstly design two indicators to quantitatively demonstrate the equilibrium phenomenon. In addition, in order to balance the estimating error and the gradient stability well, we revise the original straight through estimator and propose a power function based estimator, Rectified Straight Through Estimator (ReSTE for short). Comparing to other estimators, ReSTE is rational and capable of flexibly balancing the estimating error with the gradient stability. Extensive experiments on CIFAR-10 and ImageNet datasets show that ReSTE has excellent performance and surpasses the state-of-the-art methods without any auxiliary modules or losses.
Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning (ML) models. The emergence of large language models (LLMs) has catalyzed a paradigm shift within the ML community, showcasing their exceptional capabilities across diverse natural language processing tasks. While existing research has probed OOD detection with relative small-scale Transformers like BERT, RoBERTa and GPT-2, the stark differences in scales, pre-training objectives, and inference paradigms call into question the applicability of these findings to LLMs. This paper embarks on a pioneering empirical investigation of OOD detection in the domain of LLMs, focusing on LLaMA series ranging from 7B to 65B in size. We thoroughly evaluate commonly-used OOD detectors, scrutinizing their performance in both zero-grad and fine-tuning scenarios. Notably, we alter previous discriminative in-distribution fine-tuning into generative fine-tuning, aligning the pre-training objective of LLMs with downstream tasks. Our findings unveil that a simple cosine distance OOD detector demonstrates superior efficacy, outperforming other OOD detectors. We provide an intriguing explanation for this phenomenon by highlighting the isotropic nature of the embedding spaces of LLMs, which distinctly contrasts with the anisotropic property observed in smaller BERT family models. The new insight enhances our understanding of how LLMs detect OOD data, thereby enhancing their adaptability and reliability in dynamic environments.
Negative sampling plays a crucial role in training successful sequential recommendation models. Instead of merely employing random negative sample selection, numerous strategies have been proposed to mine informative negative samples to enhance training and performance. However, few of these approaches utilize structural information. In this work, we observe that as training progresses, the distributions of node-pair similarities in different groups with varying degrees of neighborhood overlap change significantly, suggesting that item pairs in distinct groups may possess different negative relationships. Motivated by this observation, we propose a Graph-based Negative sampling approach based on Neighborhood Overlap (GNNO) to exploit structural information hidden in user behaviors for negative mining. GNNO first constructs a global weighted item transition graph using training sequences. Subsequently, it mines hard negative samples based on the degree of overlap with the target item on the graph. Furthermore, GNNO employs curriculum learning to control the hardness of negative samples, progressing from easy to difficult. Extensive experiments on three Amazon benchmarks demonstrate GNNO's effectiveness in consistently enhancing the performance of various state-of-the-art models and surpassing existing negative sampling strategies. The code will be released at \url{https://github.com/floatSDSDS/GNNO}.
With the availability of large-scale, comprehensive, and general-purpose vision-language (VL) datasets such as MSCOCO, vision-language pre-training (VLP) has become an active area of research and proven to be effective for various VL tasks such as visual-question answering. However, studies on VLP in the medical domain have so far been scanty. To provide a comprehensive perspective on VLP for medical VL tasks, we conduct a thorough experimental analysis to study key factors that may affect the performance of VLP with a unified vision-language Transformer. To allow making sound and quick pre-training decisions, we propose RadioGraphy Captions (RGC), a high-quality, multi-modality radiographic dataset containing 18,434 image-caption pairs collected from an open-access online database MedPix. RGC can be used as a pre-training dataset or a new benchmark for medical report generation and medical image-text retrieval. By utilizing RGC and other available datasets for pre-training, we develop several key insights that can guide future medical VLP research and new strong baselines for various medical VL tasks.