Abstract:Traditional search engines struggle to synthesize fragmented information for complex queries, while generative AI search engines face challenges in relevance, comprehensiveness, and presentation. To address these limitations, we introduce Xinyu AI Search, a novel system that incorporates a query-decomposition graph to dynamically break down complex queries into sub-queries, enabling stepwise retrieval and generation. Our retrieval pipeline enhances diversity through multi-source aggregation and query expansion, while filtering and re-ranking strategies optimize passage relevance. Additionally, Xinyu AI Search introduces a novel approach for fine-grained, precise built-in citation and innovates in result presentation by integrating timeline visualization and textual-visual choreography. Evaluated on recent real-world queries, Xinyu AI Search outperforms eight existing technologies in human assessments, excelling in relevance, comprehensiveness, and insightfulness. Ablation studies validate the necessity of its key sub-modules. Our work presents the first comprehensive framework for generative AI search engines, bridging retrieval, generation, and user-centric presentation.
Abstract:Large language models (LLMs) have shown great potential as general-purpose AI assistants across various domains. To fully leverage this potential in specific applications, many companies provide fine-tuning API services, enabling users to upload their own data for LLM customization. However, fine-tuning services introduce a new safety threat: user-uploaded data, whether harmful or benign, can break the model's alignment, leading to unsafe outputs. Moreover, existing defense methods struggle to address the diversity of fine-tuning datasets (e.g., varying sizes, tasks), often sacrificing utility for safety or vice versa. To address this issue, we propose Safe Delta, a safety-aware post-training defense method that adjusts the delta parameters (i.e., the parameter change before and after fine-tuning). Specifically, Safe Delta estimates the safety degradation, selects delta parameters to maximize utility while limiting overall safety loss, and applies a safety compensation vector to mitigate residual safety loss. Through extensive experiments on four diverse datasets with varying settings, our approach consistently preserves safety while ensuring that the utility gain from benign datasets remains unaffected.
Abstract:The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Abstract:Unrestricted adversarial examples (UAEs), allow the attacker to create non-constrained adversarial examples without given clean samples, posing a severe threat to the safety of deep learning models. Recent works utilize diffusion models to generate UAEs. However, these UAEs often lack naturalness and imperceptibility due to simply optimizing in intermediate latent noises. In light of this, we propose SemDiff, a novel unrestricted adversarial attack that explores the semantic latent space of diffusion models for meaningful attributes, and devises a multi-attributes optimization approach to ensure attack success while maintaining the naturalness and imperceptibility of generated UAEs. We perform extensive experiments on four tasks on three high-resolution datasets, including CelebA-HQ, AFHQ and ImageNet. The results demonstrate that SemDiff outperforms state-of-the-art methods in terms of attack success rate and imperceptibility. The generated UAEs are natural and exhibit semantically meaningful changes, in accord with the attributes' weights. In addition, SemDiff is found capable of evading different defenses, which further validates its effectiveness and threatening.
Abstract:Depth imaging is a foundational building block for broad applications, such as autonomous driving and virtual/augmented reality. Traditionally, depth cameras have relied on time-of-flight sensors or multi-lens systems to achieve physical depth measurements. However, these systems often face a trade-off between a bulky form factor and imprecise approximations, limiting their suitability for spatially constrained scenarios. Inspired by the emerging advancements of nano-optics, we present Nano-3D, a metasurface-based neural depth imaging solution with an ultra-compact footprint. Nano-3D integrates our custom-fabricated 700 nm thick TiO2 metasurface with a multi-module deep neural network to extract precise metric depth information from monocular metasurface-polarized imagery. We demonstrate the effectiveness of Nano-3D with both simulated and physical experiments. We hope the exhibited success paves the way for the community to bridge future graphics systems with emerging nanomaterial technologies through novel computational approaches.
Abstract:Novel view synthesis has long been a practical but challenging task, although the introduction of numerous methods to solve this problem, even combining advanced representations like 3D Gaussian Splatting, they still struggle to recover high-quality results and often consume too much storage memory and training time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian Splatting method that can handle static and dynamic primitives separately, achieving a good trade-off between rendering quality and efficiency, motivated by the fact that most of the scene is the static primitive and does not require additional dynamic properties. Concretely, we focus on modeling dynamic transformations only for the dynamic primitives which benefits both efficiency and quality. We first employ a learnable decomposition strategy to separate the primitives, which relies on an additional parameter to classify primitives as static or dynamic. For the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper to transform these primitives from canonical space into deformation space at each timestamp, and then mix the static and dynamic primitives to produce the final output. This divide-and-conquer method facilitates efficient training and reduces storage redundancy. Our method not only achieves state-of-the-art rendering quality while being 20X faster in training than previous SOTA methods with a minimum storage requirement of only 30MB on real-world datasets. Code is available at https://github.com/WuJH2001/swift4d.
Abstract:Biological lifeforms can heal, grow, adapt, and reproduce -- abilities essential for sustained survival and development. In contrast, robots today are primarily monolithic machines with limited ability to self-repair, physically develop, or incorporate material from their environments. A key challenge to such physical adaptation has been that while robot minds are rapidly evolving new behaviors through AI, their bodies remain closed systems, unable to systematically integrate new material to grow or heal. We argue that open-ended physical adaptation is only possible when robots are designed using only a small repertoire of simple modules. This allows machines to mechanically adapt by consuming parts from other machines or their surroundings and shedding broken components. We demonstrate this principle using a truss modular robot platform composed of one-dimensional actuated bars. We show how robots in this space can grow bigger, faster, and more capable by consuming materials from their environment and from other robots. We suggest that machine metabolic processes akin to the one demonstrated here will be an essential part of any sustained future robot ecology.
Abstract:Recent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios. Code will be released at \url{https://github.com/WuJH2001/HDRGS}
Abstract:For a general-purpose robot to operate in reality, executing a broad range of instructions across various environments is imperative. Central to the reinforcement learning and planning for such robotic agents is a generalizable reward function. Recent advances in vision-language models, such as CLIP, have shown remarkable performance in the domain of deep learning, paving the way for open-domain visual recognition. However, collecting data on robots executing various language instructions across multiple environments remains a challenge. This paper aims to transfer video-language models with robust generalization into a generalizable language-conditioned reward function, only utilizing robot video data from a minimal amount of tasks in a singular environment. Unlike common robotic datasets used for training reward functions, human video-language datasets rarely contain trivial failure videos. To enhance the model's ability to distinguish between successful and failed robot executions, we cluster failure video features to enable the model to identify patterns within. For each cluster, we integrate a newly trained failure prompt into the text encoder to represent the corresponding failure mode. Our language-conditioned reward function shows outstanding generalization to new environments and new instructions for robot planning and reinforcement learning.
Abstract:Given the existence of various forward and inverse problems in combustion studies and applications that necessitate distinct methods for resolution, a framework to solve them in a unified way is critically needed. A promising approach is the integration of machine learning methods with governing equations of combustion systems, which exhibits superior generality and few-shot learning ability compared to purely data-driven methods. In this work, the FlamePINN-1D framework is proposed to solve the forward and inverse problems of 1D laminar flames based on physics-informed neural networks. Three cases with increasing complexity have been tested: Case 1 are freely-propagating premixed (FPP) flames with simplified physical models, while Case 2 and Case 3 are FPP and counterflow premixed (CFP) flames with detailed models, respectively. For forward problems, FlamePINN-1D aims to solve the flame fields and infer the unknown eigenvalues (such as laminar flame speeds) under the constraints of governing equations and boundary conditions. For inverse problems, FlamePINN-1D aims to reconstruct the continuous fields and infer the unknown parameters (such as transport and chemical kinetics parameters) from noisy sparse observations of the flame. Our results strongly validate these capabilities of FlamePINN-1D across various flames and working conditions. Compared to traditional methods, FlamePINN-1D is differentiable and mesh-free, exhibits no discretization errors, and is easier to implement for inverse problems. The inverse problem results also indicate the possibility of optimizing chemical mechanisms from measurements of laboratory 1D flames. Furthermore, some proposed strategies, such as hard constraints and thin-layer normalization, are proven to be essential for the robust learning of FlamePINN-1D. The code for this paper is partially available at https://github.com/CAME-THU/FlamePINN-1D.