Topic:Skeleton Based Action Recognition
What is Skeleton Based Action Recognition? Skeleton-based Action Recognition is a computer-vision task that involves recognizing human actions from a sequence of 3D skeletal joint data captured from sensors such as Microsoft Kinect, Intel RealSense, and wearable devices. The goal of skeleton-based action recognition is to develop algorithms that can understand and classify human actions from skeleton data, which can be used in various applications such as human-computer interaction, sports analysis, and surveillance.
Papers and Code
Mar 14, 2024
Abstract:Skeleton-based action recognition, which classifies human actions based on the coordinates of joints and their connectivity within skeleton data, is widely utilized in various scenarios. While Graph Convolutional Networks (GCNs) have been proposed for skeleton data represented as graphs, they suffer from limited receptive fields constrained by joint connectivity. To address this limitation, recent advancements have introduced transformer-based methods. However, capturing correlations between all joints in all frames requires substantial memory resources. To alleviate this, we propose a novel approach called Skeletal-Temporal Transformer (SkateFormer) that partitions joints and frames based on different types of skeletal-temporal relation (Skate-Type) and performs skeletal-temporal self-attention (Skate-MSA) within each partition. We categorize the key skeletal-temporal relations for action recognition into a total of four distinct types. These types combine (i) two skeletal relation types based on physically neighboring and distant joints, and (ii) two temporal relation types based on neighboring and distant frames. Through this partition-specific attention strategy, our SkateFormer can selectively focus on key joints and frames crucial for action recognition in an action-adaptive manner with efficient computation. Extensive experiments on various benchmark datasets validate that our SkateFormer outperforms recent state-of-the-art methods.
Via

Mar 15, 2024
Abstract:Most existing one-shot skeleton-based action recognition focuses on raw low-level information (e.g., joint location), and may suffer from local information loss and low generalization ability. To alleviate these, we propose to leverage text description generated from large language models (LLM) that contain high-level human knowledge, to guide feature learning, in a global-local-global way. Particularly, during training, we design $2$ prompts to gain global and local text descriptions of each action from an LLM. We first utilize the global text description to guide the skeleton encoder focus on informative joints (i.e.,global-to-local). Then we build non-local interaction between local text and joint features, to form the final global representation (i.e., local-to-global). To mitigate the asymmetry issue between the training and inference phases, we further design a dual-branch architecture that allows the model to perform novel class inference without any text input, also making the additional inference cost neglectable compared with the base skeleton encoder. Extensive experiments on three different benchmarks show that CrossGLG consistently outperforms the existing SOTA methods with large margins, and the inference cost (model size) is only $2.8$\% than the previous SOTA. CrossGLG can also serve as a plug-and-play module that can substantially enhance the performance of different SOTA skeleton encoders with a neglectable cost during inference. The source code will be released soon.
Via

Feb 03, 2024
Abstract:Skeleton-based action recognition has attracted much attention, benefiting from its succinctness and robustness. However, the minimal inter-class variation in similar action sequences often leads to confusion. The inherent spatiotemporal coupling characteristics make it challenging to mine the subtle differences in joint motion trajectories, which is critical for distinguishing confusing fine-grained actions. To alleviate this problem, we propose a Wavelet-Attention Decoupling (WAD) module that utilizes discrete wavelet transform to effectively disentangle salient and subtle motion features in the time-frequency domain. Then, the decoupling attention adaptively recalibrates their temporal responses. To further amplify the discrepancies in these subtle motion features, we propose a Fine-grained Contrastive Enhancement (FCE) module to enhance attention towards trajectory features by contrastive learning. Extensive experiments are conducted on the coarse-grained dataset NTU RGB+D and the fine-grained dataset FineGYM. Our methods perform competitively compared to state-of-the-art methods and can discriminate confusing fine-grained actions well.
* Accepted by ICASSP 2024
Via

Jul 18, 2024
Abstract:Traditional methods for human localization and pose estimation (HPE), which mainly rely on RGB images as an input modality, confront substantial limitations in real-world applications due to privacy concerns. In contrast, radar-based HPE methods emerge as a promising alternative, characterized by distinctive attributes such as through-wall recognition and privacy-preserving, rendering the method more conducive to practical deployments. This paper presents a Radar Tensor-based human pose (RT-Pose) dataset and an open-source benchmarking framework. The RT-Pose dataset comprises 4D radar tensors, LiDAR point clouds, and RGB images, and is collected for a total of 72k frames across 240 sequences with six different complexity-level actions. The 4D radar tensor provides raw spatio-temporal information, differentiating it from other radar point cloud-based datasets. We develop an annotation process using RGB images and LiDAR point clouds to accurately label 3D human skeletons. In addition, we propose HRRadarPose, the first single-stage architecture that extracts the high-resolution representation of 4D radar tensors in 3D space to aid human keypoint estimation. HRRadarPose outperforms previous radar-based HPE work on the RT-Pose benchmark. The overall HRRadarPose performance on the RT-Pose dataset, as reflected in a mean per joint position error (MPJPE) of 9.91cm, indicates the persistent challenges in achieving accurate HPE in complex real-world scenarios. RT-Pose is available at https://huggingface.co/datasets/uwipl/RT-Pose.
* ECCV 2024
Via

Jan 25, 2024
Abstract:Unsupervised skeleton based action recognition has achieved remarkable progress recently. Existing unsupervised learning methods suffer from severe overfitting problem, and thus small networks are used, significantly reducing the representation capability. To address this problem, the overfitting mechanism behind the unsupervised learning for skeleton based action recognition is first investigated. It is observed that the skeleton is already a relatively high-level and low-dimension feature, but not in the same manifold as the features for action recognition. Simply applying the existing unsupervised learning method may tend to produce features that discriminate the different samples instead of action classes, resulting in the overfitting problem. To solve this problem, this paper presents an Unsupervised spatial-temporal Feature Enrichment and Fidelity Preservation framework (U-FEFP) to generate rich distributed features that contain all the information of the skeleton sequence. A spatial-temporal feature transformation subnetwork is developed using spatial-temporal graph convolutional network and graph convolutional gate recurrent unit network as the basic feature extraction network. The unsupervised Bootstrap Your Own Latent based learning is used to generate rich distributed features and the unsupervised pretext task based learning is used to preserve the information of the skeleton sequence. The two unsupervised learning ways are collaborated as U-FEFP to produce robust and discriminative representations. Experimental results on three widely used benchmarks, namely NTU-RGB+D-60, NTU-RGB+D-120 and PKU-MMD dataset, demonstrate that the proposed U-FEFP achieves the best performance compared with the state-of-the-art unsupervised learning methods. t-SNE illustrations further validate that U-FEFP can learn more discriminative features for unsupervised skeleton based action recognition.
Via

Jan 31, 2024
Abstract:Continual learning (CL) is the research field that aims to build machine learning models that can accumulate knowledge continuously over different tasks without retraining from scratch. Previous studies have shown that pre-training graph neural networks (GNN) may lead to negative transfer (Hu et al., 2020) after fine-tuning, a setting which is closely related to CL. Thus, we focus on studying GNN in the continual graph learning (CGL) setting. We propose the first continual graph learning benchmark for spatio-temporal graphs and use it to benchmark well-known CGL methods in this novel setting. The benchmark is based on the N-UCLA and NTU-RGB+D datasets for skeleton-based action recognition. Beyond benchmarking for standard performance metrics, we study the class and task-order sensitivity of CGL methods, i.e., the impact of learning order on each class/task's performance, and the architectural sensitivity of CGL methods with backbone GNN at various widths and depths. We reveal that task-order robust methods can still be class-order sensitive and observe results that contradict previous empirical observations on architectural sensitivity in CL.
* This work is accepted at VISAPP 2024 as a short paper
Via

Jun 05, 2024
Abstract:Self-supervised learning (SSL), which aims to learn meaningful prior representations from unlabeled data, has been proven effective for label-efficient skeleton-based action understanding. Different from the image domain, skeleton data possesses sparser spatial structures and diverse representation forms, with the absence of background clues and the additional temporal dimension. This presents the new challenges for the pretext task design of spatial-temporal motion representation learning. Recently, many endeavors have been made for skeleton-based SSL and remarkable progress has been achieved. However, a systematic and thorough review is still lacking. In this paper, we conduct, for the first time, a comprehensive survey on self-supervised skeleton-based action representation learning, where various literature is organized according to their pre-training pretext task methodologies. Following the taxonomy of context-based, generative learning, and contrastive learning approaches, we make a thorough review and benchmark of existing works and shed light on the future possible directions. Our investigation demonstrates that most SSL works rely on the single paradigm, learning representations of a single level, and are evaluated on the action recognition task solely, which leaves the generalization power of skeleton SSL models under-explored. To this end, a novel and effective SSL method for skeleton is further proposed, which integrates multiple pretext tasks to jointly learn versatile representations of different granularity, substantially boosting the generalization capacity for different downstream tasks. Extensive experiments under three large-scale datasets demonstrate that the proposed method achieves the superior generalization performance on various downstream tasks, including recognition, retrieval, detection, and few-shot learning.
Via

Jan 09, 2024
Abstract:Skeleton-based action recognition is a central task of human-computer interaction. However, most of the previous methods suffer from two issues: (i) semantic ambiguity arising from spatiotemporal information mixture; and (ii) overlooking the explicit exploitation of the latent data distributions (i.e., the intra-class variations and inter-class relations), thereby leading to local optimum solutions of the skeleton encoders. To mitigate this, we propose a spatial-temporal decoupling contrastive learning (STD-CL) framework to obtain discriminative and semantically distinct representations from the sequences, which can be incorporated into almost all previous skeleton encoders and have no impact on the skeleton encoders when testing. Specifically, we decouple the global features into spatial-specific and temporal-specific features to reduce the spatiotemporal coupling of features. Furthermore, to explicitly exploit the latent data distributions, we employ the attentive features to contrastive learning, which models the cross-sequence semantic relations by pulling together the features from the positive pairs and pushing away the negative pairs. Extensive experiments show that STD-CL with four various skeleton encoders (HCN, 2S-AGCN, CTR-GCN, and Hyperformer) achieves solid improvement on NTU60, NTU120, and NW-UCLA benchmarks. The code will be released.
Via

Feb 05, 2024
Abstract:This paper introduces AutoGCN, a generic Neural Architecture Search (NAS) algorithm for Human Activity Recognition (HAR) using Graph Convolution Networks (GCNs). HAR has gained attention due to advances in deep learning, increased data availability, and enhanced computational capabilities. At the same time, GCNs have shown promising results in modeling relationships between body key points in a skeletal graph. While domain experts often craft dataset-specific GCN-based methods, their applicability beyond this specific context is severely limited. AutoGCN seeks to address this limitation by simultaneously searching for the ideal hyperparameters and architecture combination within a versatile search space using a reinforcement controller while balancing optimal exploration and exploitation behavior with a knowledge reservoir during the search process. We conduct extensive experiments on two large-scale datasets focused on skeleton-based action recognition to assess the proposed algorithm's performance. Our experimental results underscore the effectiveness of AutoGCN in constructing optimal GCN architectures for HAR, outperforming conventional NAS and GCN methods, as well as random search. These findings highlight the significance of a diverse search space and an expressive input representation to enhance the network performance and generalizability.
Via

Jun 07, 2024
Abstract:Patients with mental disorders often exhibit risky abnormal actions, such as climbing walls or hitting windows, necessitating intelligent video behavior monitoring for smart healthcare with the rising Internet of Things (IoT) technology. However, the development of vision-based Human Action Recognition (HAR) for these actions is hindered by the lack of specialized algorithms and datasets. In this paper, we innovatively propose to build a vision-based HAR dataset including abnormal actions often occurring in the mental disorder group and then introduce a novel Scene-Motion-aware Action Recognition Technology framework, named SMART, consisting of two technical modules. First, we propose a scene perception module to extract human motion trajectory and human-scene interaction features, which introduces additional scene information for a supplementary semantic representation of the above actions. Second, the multi-stage fusion module fuses the skeleton motion, motion trajectory, and human-scene interaction features, enhancing the semantic association between the skeleton motion and the above supplementary representation, thus generating a comprehensive representation with both human motion and scene information. The effectiveness of our proposed method has been validated on our self-collected HAR dataset (MentalHAD), achieving 94.9% and 93.1% accuracy in un-seen subjects and scenes and outperforming state-of-the-art approaches by 6.5% and 13.2%, respectively. The demonstrated subject- and scene- generalizability makes it possible for SMART's migration to practical deployment in smart healthcare systems for mental disorder patients in medical settings. The code and dataset will be released publicly for further research: https://github.com/Inowlzy/SMART.git.
Via
