Skeleton-based Action Recognition is a computer-vision task that involves recognizing human actions from a sequence of 3D skeletal joint data captured from sensors such as Microsoft Kinect, Intel RealSense, and wearable devices. The goal of skeleton-based action recognition is to develop algorithms that can understand and classify human actions from skeleton data, which can be used in various applications such as human-computer interaction, sports analysis, and surveillance.




Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training. Previous research has focused on aligning sequences' visual and semantic spatial distributions. However, these methods extract semantic features simply. They ignore that proper prompt design for rich and fine-grained action cues can provide robust representation space clustering. In order to alleviate the problem of insufficient information available for skeleton sequences, we design an information compensation learning framework from an information-theoretic perspective to improve zero-shot action recognition accuracy with a multi-granularity semantic interaction mechanism. Inspired by ensemble learning, we propose a multi-level alignment (MLA) approach to compensate information for action classes. MLA aligns multi-granularity embeddings with visual embedding through a multi-head scoring mechanism to distinguish semantically similar action names and visually similar actions. Furthermore, we introduce a new loss function sampling method to obtain a tight and robust representation. Finally, these multi-granularity semantic embeddings are synthesized to form a proper decision surface for classification. Significant action recognition performance is achieved when evaluated on the challenging NTU RGB+D, NTU RGB+D 120, and PKU-MMD benchmarks and validate that multi-granularity semantic features facilitate the differentiation of action clusters with similar visual features.




Skeleton-based action recognition has gained considerable traction thanks to its utilization of succinct and robust skeletal representations. Nonetheless, current methodologies often lean towards utilizing a solitary backbone to model skeleton modality, which can be limited by inherent flaws in the network backbone. To address this and fully leverage the complementary characteristics of various network architectures, we propose a novel Hybrid Dual-Branch Network (HDBN) for robust skeleton-based action recognition, which benefits from the graph convolutional network's proficiency in handling graph-structured data and the powerful modeling capabilities of Transformers for global information. In detail, our proposed HDBN is divided into two trunk branches: MixGCN and MixFormer. The two branches utilize GCNs and Transformers to model both 2D and 3D skeletal modalities respectively. Our proposed HDBN emerged as one of the top solutions in the Multi-Modal Video Reasoning and Analyzing Competition (MMVRAC) of 2024 ICME Grand Challenge, achieving accuracies of 47.95% and 75.36% on two benchmarks of the UAV-Human dataset by outperforming most existing methods. Our code will be publicly available at: https://github.com/liujf69/ICMEW2024-Track10.




This paper presents ARN-LSTM, a novel multi-stream action recognition model designed to address the challenge of simultaneously capturing spatial motion and temporal dynamics in action sequences. Traditional methods often focus solely on spatial or temporal features, limiting their ability to comprehend complex human activities fully. Our proposed model integrates joint, motion, and temporal information through a multi-stream fusion architecture. Specifically, it comprises a joint stream for extracting skeleton features, a temporal stream for capturing dynamic temporal features, and an ARN-LSTM block that utilizes Time-Distributed Long Short-Term Memory (TD-LSTM) layers followed by an Attention Relation Network (ARN) to model temporal relations. The outputs from these streams are fused in a fully connected layer to provide the final action prediction. Evaluations on the NTU RGB+D 60 and NTU RGB+D 120 datasets demonstrate the effectiveness of our model, achieving effective performance, particularly in group activity recognition.
While remarkable progress has been made on supervised skeleton-based action recognition, the challenge of zero-shot recognition remains relatively unexplored. In this paper, we argue that relying solely on aligning label-level semantics and global skeleton features is insufficient to effectively transfer locally consistent visual knowledge from seen to unseen classes. To address this limitation, we introduce Part-aware Unified Representation between Language and Skeleton (PURLS) to explore visual-semantic alignment at both local and global scales. PURLS introduces a new prompting module and a novel partitioning module to generate aligned textual and visual representations across different levels. The former leverages a pre-trained GPT-3 to infer refined descriptions of the global and local (body-part-based and temporal-interval-based) movements from the original action labels. The latter employs an adaptive sampling strategy to group visual features from all body joint movements that are semantically relevant to a given description. Our approach is evaluated on various skeleton/language backbones and three large-scale datasets, i.e., NTU-RGB+D 60, NTU-RGB+D 120, and a newly curated dataset Kinetics-skeleton 200. The results showcase the universality and superior performance of PURLS, surpassing prior skeleton-based solutions and standard baselines from other domains. The source codes can be accessed at https://github.com/azzh1/PURLS.




In recent years, skeleton-based action recognition, leveraging multimodal Graph Convolutional Networks (GCN), has achieved remarkable results. However, due to their deep structure and reliance on continuous floating-point operations, GCN-based methods are energy-intensive. To address this issue, we propose an innovative Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation (MK-SGN). By merging the energy efficiency of Spiking Neural Network (SNN) with the graph representation capability of GCN, the proposed MK-SGN reduces energy consumption while maintaining recognition accuracy. Firstly, we convert GCN into Spiking Graph Convolutional Network (SGN) and construct a foundational Base-SGN for skeleton-based action recognition, establishing a new benchmark and paving the way for future research exploration. Secondly, we further propose a Spiking Multimodal Fusion module (SMF), leveraging mutual information to process multimodal data more efficiently. Additionally, we introduce a spiking attention mechanism and design a Spatio Graph Convolution module with a Spatial Global Spiking Attention mechanism (SA-SGC), enhancing feature learning capability. Furthermore, we delve into knowledge distillation methods from multimodal GCN to SGN and propose a novel, integrated method that simultaneously focuses on both intermediate layer distillation and soft label distillation to improve the performance of SGN. On two challenging datasets for skeleton-based action recognition, MK-SGN outperforms the state-of-the-art GCN-like frameworks in reducing computational load and energy consumption. In contrast, typical GCN methods typically consume more than 35mJ per action sample, while MK-SGN reduces energy consumption by more than 98%.




Skeleton-based action recognition (SAR) in videos is an important but challenging task in computer vision. The recent state-of-the-art models for SAR are primarily based on graph convolutional neural networks (GCNs), which are powerful in extracting the spatial information of skeleton data. However, it is yet clear that such GCN-based models can effectively capture the temporal dynamics of human action sequences. To this end, we propose the DevLSTM module, which exploits the path development -- a principled and parsimonious representation for sequential data by leveraging the Lie group structure. The path development, originated from Rough path theory, can effectively capture the order of events in high-dimensional stream data with massive dimension reduction and consequently enhance the LSTM module substantially. Our proposed G-DevLSTM module can be conveniently plugged into the temporal graph, complementing existing advanced GCN-based models. Our empirical studies on the NTU60, NTU120 and Chalearn2013 datasets demonstrate that our proposed hybrid model significantly outperforms the current best-performing methods in SAR tasks. The code is available at https://github.com/DeepIntoStreams/GCN-DevLSTM.




Pooling is a crucial operation in computer vision, yet the unique structure of skeletons hinders the application of existing pooling strategies to skeleton graph modelling. In this paper, we propose an Improved Graph Pooling Network, referred to as IGPN. The main innovations include: Our method incorporates a region-awareness pooling strategy based on structural partitioning. The correlation matrix of the original feature is used to adaptively adjust the weight of information in different regions of the newly generated features, resulting in more flexible and effective processing. To prevent the irreversible loss of discriminative information, we propose a cross fusion module and an information supplement module to provide block-level and input-level information respectively. As a plug-and-play structure, the proposed operation can be seamlessly combined with existing GCN-based models. We conducted extensive evaluations on several challenging benchmarks, and the experimental results indicate the effectiveness of our proposed solutions. For example, in the cross-subject evaluation of the NTU-RGB+D 60 dataset, IGPN achieves a significant improvement in accuracy compared to the baseline while reducing Flops by nearly 70%; a heavier version has also been introduced to further boost accuracy.




Skeleton-based gesture recognition methods have achieved high success using Graph Convolutional Network (GCN). In addition, context-dependent adaptive topology as a neighborhood vertex information and attention mechanism leverages a model to better represent actions. In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN to effectively improve modeling ability to achieve state-of-the-art results on several datasets. We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node. These two are followed by multi-scale convolution network with dilations, which not only captures the long-range temporal dependencies of joints but also the long-range spatial dependencies (i.e., long-distance dependencies) of node temporal behaviors. They are combined into high-level spatial-temporal representations and output the predicted action with the softmax classifier.




In Human Activity Recognition (HAR), understanding the intricacy of body movements within high-risk applications is essential. This study uses SHapley Additive exPlanations (SHAP) to explain the decision-making process of Graph Convolution Networks (GCNs) when classifying activities with skeleton data. We employ SHAP to explain two real-world datasets: one for cerebral palsy (CP) classification and the widely used NTU RGB+D 60 action recognition dataset. To test the explanation, we introduce a novel perturbation approach that modifies the model's edge importance matrix, allowing us to evaluate the impact of specific body key points on prediction outcomes. To assess the fidelity of our explanations, we employ informed perturbation, targeting body key points identified as important by SHAP and comparing them against random perturbation as a control condition. This perturbation enables a judgment on whether the body key points are truly influential or non-influential based on the SHAP values. Results on both datasets show that body key points identified as important through SHAP have the largest influence on the accuracy, specificity, and sensitivity metrics. Our findings highlight that SHAP can provide granular insights into the input feature contribution to the prediction outcome of GCNs in HAR tasks. This demonstrates the potential for more interpretable and trustworthy models in high-stakes applications like healthcare or rehabilitation.
Skeleton-based action recognition is vital for comprehending human-centric videos and has applications in diverse domains. One of the challenges of skeleton-based action recognition is dealing with low-quality data, such as skeletons that have missing or inaccurate joints. This paper addresses the issue of enhancing action recognition using low-quality skeletons through a general knowledge distillation framework. The proposed framework employs a teacher-student model setup, where a teacher model trained on high-quality skeletons guides the learning of a student model that handles low-quality skeletons. To bridge the gap between heterogeneous high-quality and lowquality skeletons, we present a novel part-based skeleton matching strategy, which exploits shared body parts to facilitate local action pattern learning. An action-specific part matrix is developed to emphasize critical parts for different actions, enabling the student model to distill discriminative part-level knowledge. A novel part-level multi-sample contrastive loss achieves knowledge transfer from multiple high-quality skeletons to low-quality ones, which enables the proposed knowledge distillation framework to include training low-quality skeletons that lack corresponding high-quality matches. Comprehensive experiments conducted on the NTU-RGB+D, Penn Action, and SYSU 3D HOI datasets demonstrate the effectiveness of the proposed knowledge distillation framework.