Abstract:As sounds carry rich information, environmental sound classification (ESC) is crucial for numerous applications such as rare wild animals detection. However, our world constantly changes, asking ESC models to adapt to new sounds periodically. The major challenge here is catastrophic forgetting, where models lose the ability to recognize old sounds when learning new ones. Many methods address this using replay-based continual learning. This could be impractical in scenarios such as data privacy concerns. Exemplar-free methods are commonly used but can distort old features, leading to worse performance. To overcome such limitations, we propose an Acoustic Feature Transformation (AFT) technique that aligns the temporal features of old classes to the new space, including a selectively compressed feature space. AFT mitigates the forgetting of old knowledge without retaining past data. We conducted experiments on two datasets, showing consistent improvements over baseline models with accuracy gains of 3.7\% to 3.9\%.
Abstract:Multimodal acoustic event classification plays a key role in audio-visual systems. Although combining audio and visual signals improves recognition, it is still difficult to align them over time and to reduce the effect of noise across modalities. Existing methods often treat audio and visual streams separately, fusing features later with contrastive or mutual information objectives. Recent advances explore multimodal graph learning, but most fail to distinguish between intra- and inter-modal temporal dependencies. To address this, we propose Temporally Heterogeneous Graph-based Contrastive Learning (THGCL). Our framework constructs a temporal graph for each event, where audio and video segments form nodes and their temporal links form edges. We introduce Gaussian processes for intra-modal smoothness, Hawkes processes for inter-modal decay, and contrastive learning to capture fine-grained relationships. Experiments on AudioSet show that THGCL achieves state-of-the-art performance.
Abstract:Emotion recognition in conversations (ERC) aims to predict the emotional state of each utterance by using multiple input types, such as text and audio. While Transformer-based models have shown strong performance in this task, they often face two major issues: high computational cost and heavy dependence on speaker information. These problems reduce their ability to generalize in real-world conversations. To solve these challenges, we propose LPGNet, a Lightweight network with Parallel attention and Gated fusion for multimodal ERC. The main part of LPGNet is the Lightweight Parallel Interaction Attention (LPIA) module. This module replaces traditional stacked Transformer layers with parallel dot-product attention, which can model both within-modality and between-modality relationships more efficiently. To improve emotional feature learning, LPGNet also uses a dual-gated fusion method. This method filters and combines features from different input types in a flexible and dynamic way. In addition, LPGNet removes speaker embeddings completely, which allows the model to work independently of speaker identity. Experiments on the IEMOCAP dataset show that LPGNet reaches over 87% accuracy and F1-score in 4-class emotion classification. It outperforms strong baseline models while using fewer parameters and showing better generalization across speakers.
Abstract:Most sound event detection (SED) systems perform well on clean datasets but degrade significantly in noisy environments. Language-queried audio source separation (LASS) models show promise for robust SED by separating target events; existing methods require elaborate multi-stage training and lack explicit guidance for target events. To address these challenges, we introduce event appearance detection (EAD), a counting-based approach that counts event occurrences at both the clip and frame levels. Based on EAD, we propose a co-training-based multi-task learning framework for EAD and SED to enhance SED's performance in noisy environments. First, SED struggles to learn the same patterns as EAD. Then, a task-based constraint is designed to improve prediction consistency between SED and EAD. This framework provides more reliable clip-level predictions for LASS models and strengthens timestamp detection capability. Experiments on DESED and WildDESED datasets demonstrate better performance compared to existing methods, with advantages becoming more pronounced at higher noise levels.
Abstract:Recent progress in generative AI has made it increasingly easy to create natural-sounding deepfake speech from just a few seconds of audio. While these tools support helpful applications, they also raise serious concerns by making it possible to generate convincing fake speech in many languages. Current research has largely focused on detecting fake speech, but little attention has been given to tracing the source models used to generate it. This paper introduces the first benchmark for multilingual speech deepfake source tracing, covering both mono- and cross-lingual scenarios. We comparatively investigate DSP- and SSL-based modeling; examine how SSL representations fine-tuned on different languages impact cross-lingual generalization performance; and evaluate generalization to unseen languages and speakers. Our findings offer the first comprehensive insights into the challenges of identifying speech generation models when training and inference languages differ. The dataset, protocol and code are available at https://github.com/xuanxixi/Multilingual-Source-Tracing.
Abstract:Enhancing user engagement through interactions plays an essential role in socially-driven dialogues. While prior works have optimized models to reason over relevant knowledge or plan a dialogue act flow, the relationship between user engagement and knowledge or dialogue acts is subtle and does not guarantee user engagement in socially-driven dialogues. To this end, we enable interactive LLMs to learn user engagement by leveraging signals from the future development of conversations. Specifically, we adopt a more direct and relevant indicator of user engagement, i.e., the user's reaction related to dialogue intention after the interaction, as a reward to align interactive LLMs. To achieve this, we develop a user simulator to interact with target interactive LLMs and explore interactions between the user and the interactive LLM system via \textit{i$\times$MCTS} (\textit{M}onte \textit{C}arlo \textit{T}ree \textit{S}earch for \textit{i}nteraction). In this way, we collect a dataset containing pairs of higher and lower-quality experiences using \textit{i$\times$MCTS}, and align interactive LLMs for high-level user engagement by direct preference optimization (DPO) accordingly. Experiments conducted on two socially-driven dialogue scenarios (emotional support conversations and persuasion for good) demonstrate that our method effectively enhances user engagement in interactive LLMs.
Abstract:Pre-training methods have achieved significant performance improvements in sound event localization and detection (SELD) tasks, but existing Transformer-based models suffer from high computational complexity. In this work, we propose a stereo sound event localization and detection system based on pre-trained PSELDnet and bidirectional Mamba sequence modeling. We replace the Conformer module with a BiMamba module and introduce asymmetric convolutions to more effectively model the spatiotemporal relationships between time and frequency dimensions. Experimental results demonstrate that the proposed method achieves significantly better performance than the baseline and the original PSELDnet with Conformer decoder architecture on the DCASE2025 Task 3 development dataset, while also reducing computational complexity. These findings highlight the effectiveness of the BiMamba architecture in addressing the challenges of the SELD task.
Abstract:Large language models (LLMs) demonstrate considerable proficiency in numerous coding-related tasks; however, their capabilities in detecting software vulnerabilities remain limited. This limitation primarily stems from two factors: (1) the absence of reasoning data related to vulnerabilities, which hinders the models' ability to capture underlying vulnerability patterns; and (2) their focus on learning semantic representations rather than the reason behind them, thus failing to recognize semantically similar vulnerability samples. Furthermore, the development of LLMs specialized in vulnerability detection is challenging, particularly in environments characterized by the scarcity of high-quality datasets. In this paper, we propose a novel framework ReVD that excels at mining vulnerability patterns through reasoning data synthesizing and vulnerability-specific preference optimization. Specifically, we construct forward and backward reasoning processes for vulnerability and corresponding fixed code, ensuring the synthesis of high-quality reasoning data. Moreover, we design the triplet supervised fine-tuning followed by curriculum online preference optimization for enabling ReVD to better understand vulnerability patterns. The extensive experiments conducted on PrimeVul and SVEN datasets demonstrate that ReVD sets new state-of-the-art for LLM-based software vulnerability detection, e.g., 12.24\%-22.77\% improvement in the accuracy. The source code and data are available at https://github.com/Xin-Cheng-Wen/PO4Vul.
Abstract:Reconstructing 3D scenes from sparse viewpoints is a long-standing challenge with wide applications. Recent advances in feed-forward 3D Gaussian sparse-view reconstruction methods provide an efficient solution for real-time novel view synthesis by leveraging geometric priors learned from large-scale multi-view datasets and computing 3D Gaussian centers via back-projection. Despite offering strong geometric cues, both feed-forward multi-view depth estimation and flow-depth joint estimation face key limitations: the former suffers from mislocation and artifact issues in low-texture or repetitive regions, while the latter is prone to local noise and global inconsistency due to unreliable matches when ground-truth flow supervision is unavailable. To overcome this, we propose JointSplat, a unified framework that leverages the complementarity between optical flow and depth via a novel probabilistic optimization mechanism. Specifically, this pixel-level mechanism scales the information fusion between depth and flow based on the matching probability of optical flow during training. Building upon the above mechanism, we further propose a novel multi-view depth-consistency loss to leverage the reliability of supervision while suppressing misleading gradients in uncertain areas. Evaluated on RealEstate10K and ACID, JointSplat consistently outperforms state-of-the-art (SOTA) methods, demonstrating the effectiveness and robustness of our proposed probabilistic joint flow-depth optimization approach for high-fidelity sparse-view 3D reconstruction.
Abstract:Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.