Abstract:Continual Learning (CL) is a powerful tool that enables agents to learn a sequence of tasks, accumulating knowledge learned in the past and using it for problem-solving or future task learning. However, existing CL methods often assume that the agent's capabilities remain static within dynamic environments, which doesn't reflect real-world scenarios where capabilities dynamically change. This paper introduces a new and realistic problem: Continual Learning with Dynamic Capabilities (CL-DC), posing a significant challenge for CL agents: How can policy generalization across different action spaces be achieved? Inspired by the cortical functions, we propose an Action-Adaptive Continual Learning framework (AACL) to address this challenge. Our framework decouples the agent's policy from the specific action space by building an action representation space. For a new action space, the encoder-decoder of action representations is adaptively fine-tuned to maintain a balance between stability and plasticity. Furthermore, we release a benchmark based on three environments to validate the effectiveness of methods for CL-DC. Experimental results demonstrate that our framework outperforms popular methods by generalizing the policy across action spaces.
Abstract:Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
Abstract:When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
Abstract:DeepSeek-R1 has demonstrated powerful reasoning capabilities in the text domain through stable reinforcement learning (RL). Recently, in the multimodal domain, works have begun to directly apply RL to generate R1-like free-form reasoning for Visual Question Answering (VQA) tasks. However, multimodal tasks share an intrinsically different nature from textual tasks, which heavily rely on the understanding of the input image to solve the problem. Therefore, such free-form reasoning faces two critical limitations in the VQA task: (1) Extended reasoning chains diffuse visual focus away from task-critical regions, degrading answer accuracy. (2) Unverifiable intermediate steps amplify policy-gradient variance and computational costs overhead. To address these issues, in this paper, we introduce SATORI ($\textbf{S}patially$ $\textbf{A}nchored$ $\textbf{T}ask$ $\textbf{O}ptimization$ with $\textbf{R}e\textbf{I}nforcement$ Learning), which decomposes VQA into three verifiable stages, including global image captioning, region localization, and answer prediction, each supplying explicit reward signals. Furthermore, we also introduce VQA-Verify, a 12k dataset annotated with answer-aligned captions and bounding-boxes to facilitate training. Experiments demonstrate consistent performance improvements across seven VQA benchmarks, achieving up to $15.7\%$ improvement in accuracy in accuracy compared to the R1-like baseline. Our analysis of the attention map confirms enhanced focus on critical regions, which brings improvements in accuracy. Our code is available at https://github.com/justairr/SATORI-R1.
Abstract:Recent advances in text-to-image (T2I) diffusion model fine-tuning leverage reinforcement learning (RL) to align generated images with learnable reward functions. The existing approaches reformulate denoising as a Markov decision process for RL-driven optimization. However, they suffer from reward sparsity, receiving only a single delayed reward per generated trajectory. This flaw hinders precise step-level attribution of denoising actions, undermines training efficiency. To address this, we propose a simple yet effective credit assignment framework that dynamically distributes dense rewards across denoising steps. Specifically, we track changes in cosine similarity between intermediate and final images to quantify each step's contribution on progressively reducing the distance to the final image. Our approach avoids additional auxiliary neural networks for step-level preference modeling and instead uses reward shaping to highlight denoising phases that have a greater impact on image quality. Our method achieves 1.25 to 2 times higher sample efficiency and better generalization across four human preference reward functions, without compromising the original optimal policy.
Abstract:Complex tasks are increasingly delegated to ensembles of specialized LLM-based agents that reason, communicate, and coordinate actions-both among themselves and through interactions with external tools, APIs, and databases. While persistent memory has been shown to enhance single-agent performance, most approaches assume a monolithic, single-user context-overlooking the benefits and challenges of knowledge transfer across users under dynamic, asymmetric permissions. We introduce Collaborative Memory, a framework for multi-user, multi-agent environments with asymmetric, time-evolving access controls encoded as bipartite graphs linking users, agents, and resources. Our system maintains two memory tiers: (1) private memory-private fragments visible only to their originating user; and (2) shared memory-selectively shared fragments. Each fragment carries immutable provenance attributes (contributing agents, accessed resources, and timestamps) to support retrospective permission checks. Granular read policies enforce current user-agent-resource constraints and project existing memory fragments into filtered transformed views. Write policies determine fragment retention and sharing, applying context-aware transformations to update the memory. Both policies may be designed conditioned on system, agent, and user-level information. Our framework enables safe, efficient, and interpretable cross-user knowledge sharing, with provable adherence to asymmetric, time-varying policies and full auditability of memory operations.
Abstract:Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance generation quality of the diffusion transformers. However, existing approaches necessitate to either introduce an additional and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation A}lignment (SRA), a simple yet straightforward method that obtain representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in earlier layer with higher noise to that in later layer with lower noise to progressively enhance the overall representation learning during only generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that heavily dependent on powerful external representation priors.
Abstract:We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
Abstract:Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
Abstract:The study of neural networks from the perspective of Fourier features has garnered significant attention. While existing analytical research suggests that neural networks tend to learn low-frequency features, a clear attribution method for identifying the specific learned Fourier features has remained elusive. To bridge this gap, we propose a novel Fourier feature attribution method grounded in signal decomposition theory. Additionally, we analyze the differences between game-theoretic attribution metrics for Fourier and spatial domain features, demonstrating that game-theoretic evaluation metrics are better suited for Fourier-based feature attribution. Our experiments show that Fourier feature attribution exhibits superior feature selection capabilities compared to spatial domain attribution methods. For instance, in the case of Vision Transformers (ViTs) on the ImageNet dataset, only $8\%$ of the Fourier features are required to maintain the original predictions for $80\%$ of the samples. Furthermore, we compare the specificity of features identified by our method against traditional spatial domain attribution methods. Results reveal that Fourier features exhibit greater intra-class concentration and inter-class distinctiveness, indicating their potential for more efficient classification and explainable AI algorithms.