Abstract:Synthetic Aperture Radar (SAR) imagery provides robust environmental and temporal coverage (e.g., during clouds, seasons, day-night cycles), yet its noise and unique structural patterns pose interpretation challenges, especially for non-experts. SAR-to-EO (Electro-Optical) image translation (SET) has emerged to make SAR images more perceptually interpretable. However, traditional approaches trained from scratch on limited SAR-EO datasets are prone to overfitting. To address these challenges, we introduce Confidence Diffusion for SAR-to-EO Translation, called C-DiffSET, a framework leveraging pretrained Latent Diffusion Model (LDM) extensively trained on natural images, thus enabling effective adaptation to the EO domain. Remarkably, we find that the pretrained VAE encoder aligns SAR and EO images in the same latent space, even with varying noise levels in SAR inputs. To further improve pixel-wise fidelity for SET, we propose a confidence-guided diffusion (C-Diff) loss that mitigates artifacts from temporal discrepancies, such as appearing or disappearing objects, thereby enhancing structural accuracy. C-DiffSET achieves state-of-the-art (SOTA) results on multiple datasets, significantly outperforming the very recent image-to-image translation methods and SET methods with large margins.
Abstract:We firstly present a diffusion-based action recognition with zero-shot learning for skeleton inputs. In zero-shot skeleton-based action recognition, aligning skeleton features with the text features of action labels is essential for accurately predicting unseen actions. Previous methods focus on direct alignment between skeleton and text latent spaces, but the modality gaps between these spaces hinder robust generalization learning. Motivated from the remarkable performance of text-to-image diffusion models, we leverage their alignment capabilities between different modalities mostly by focusing on the training process during reverse diffusion rather than using their generative power. Based on this, our framework is designed as a Triplet Diffusion for Skeleton-Text Matching (TDSM) method which aligns skeleton features with text prompts through reverse diffusion, embedding the prompts into the unified skeleton-text latent space to achieve robust matching. To enhance discriminative power, we introduce a novel triplet diffusion (TD) loss that encourages our TDSM to correct skeleton-text matches while pushing apart incorrect ones. Our TDSM significantly outperforms the very recent state-of-the-art methods with large margins of 2.36%-point to 13.05%-point, demonstrating superior accuracy and scalability in zero-shot settings through effective skeleton-text matching.
Abstract:Unlike fixed- or variable-rate image coding, progressive image coding (PIC) aims to compress various qualities of images into a single bitstream, increasing the versatility of bitstream utilization and providing high compression efficiency compared to simulcast compression. Research on neural network (NN)-based PIC is in its early stages, mainly focusing on applying varying quantization step sizes to the transformed latent representations in a hierarchical manner. These approaches are designed to compress only the progressively added information as the quality improves, considering that a wider quantization interval for lower-quality compression includes multiple narrower sub-intervals for higher-quality compression. However, the existing methods are based on handcrafted quantization hierarchies, resulting in sub-optimal compression efficiency. In this paper, we propose an NN-based progressive coding method that firstly utilizes learned quantization step sizes via learning for each quantization layer. We also incorporate selective compression with which only the essential representation components are compressed for each quantization layer. We demonstrate that our method achieves significantly higher coding efficiency than the existing approaches with decreased decoding time and reduced model size.
Abstract:Skeleton-based action recognition, which classifies human actions based on the coordinates of joints and their connectivity within skeleton data, is widely utilized in various scenarios. While Graph Convolutional Networks (GCNs) have been proposed for skeleton data represented as graphs, they suffer from limited receptive fields constrained by joint connectivity. To address this limitation, recent advancements have introduced transformer-based methods. However, capturing correlations between all joints in all frames requires substantial memory resources. To alleviate this, we propose a novel approach called Skeletal-Temporal Transformer (SkateFormer) that partitions joints and frames based on different types of skeletal-temporal relation (Skate-Type) and performs skeletal-temporal self-attention (Skate-MSA) within each partition. We categorize the key skeletal-temporal relations for action recognition into a total of four distinct types. These types combine (i) two skeletal relation types based on physically neighboring and distant joints, and (ii) two temporal relation types based on neighboring and distant frames. Through this partition-specific attention strategy, our SkateFormer can selectively focus on key joints and frames crucial for action recognition in an action-adaptive manner with efficient computation. Extensive experiments on various benchmark datasets validate that our SkateFormer outperforms recent state-of-the-art methods.
Abstract:We present a joint learning scheme of video super-resolution and deblurring, called VSRDB, to restore clean high-resolution (HR) videos from blurry low-resolution (LR) ones. This joint restoration problem has drawn much less attention compared to single restoration problems. In this paper, we propose a novel flow-guided dynamic filtering (FGDF) and iterative feature refinement with multi-attention (FRMA), which constitutes our VSRDB framework, denoted as FMA-Net. Specifically, our proposed FGDF enables precise estimation of both spatio-temporally-variant degradation and restoration kernels that are aware of motion trajectories through sophisticated motion representation learning. Compared to conventional dynamic filtering, the FGDF enables the FMA-Net to effectively handle large motions into the VSRDB. Additionally, the stacked FRMA blocks trained with our novel temporal anchor (TA) loss, which temporally anchors and sharpens features, refine features in a course-to-fine manner through iterative updates. Extensive experiments demonstrate the superiority of the proposed FMA-Net over state-of-the-art methods in terms of both quantitative and qualitative quality. Codes and pre-trained models are available at: https://kaist-viclab.github.io/fmanet-site
Abstract:Video view synthesis, allowing for the creation of visually appealing frames from arbitrary viewpoints and times, offers immersive viewing experiences. Neural radiance fields, particularly NeRF, initially developed for static scenes, have spurred the creation of various methods for video view synthesis. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movement during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel dynamic deblurring NeRF framework for blurry monocular video, called DyBluRF, consisting of an Interleave Ray Refinement (IRR) stage and a Motion Decomposition-based Deblurring (MDD) stage. Our DyBluRF is the first that addresses and handles the novel view synthesis for blurry monocular video. The IRR stage jointly reconstructs dynamic 3D scenes and refines the inaccurate camera pose information to combat imprecise pose information extracted from the given blurry frames. The MDD stage is a novel incremental latent sharp-rays prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. Extensive experimental results demonstrate that our DyBluRF outperforms qualitatively and quantitatively the very recent state-of-the-art methods. Our project page including source codes and pretrained model are publicly available at https://kaist-viclab.github.io/dyblurf-site/.
Abstract:Self-supervised monocular depth estimation (DE) is an approach to learning depth without costly depth ground truths. However, it often struggles with moving objects that violate the static scene assumption during training. To address this issue, we introduce a coarse-to-fine training strategy leveraging the ground contacting prior based on the observation that most moving objects in outdoor scenes contact the ground. In the coarse training stage, we exclude the objects in dynamic classes from the reprojection loss calculation to avoid inaccurate depth learning. To provide precise supervision on the depth of the objects, we present a novel Ground-contacting-prior Disparity Smoothness Loss (GDS-Loss) that encourages a DE network to align the depth of the objects with their ground-contacting points. Subsequently, in the fine training stage, we refine the DE network to learn the detailed depth of the objects from the reprojection loss, while ensuring accurate DE on the moving object regions by employing our regularization loss with a cost-volume-based weighting factor. Our overall coarse-to-fine training strategy can easily be integrated with existing DE methods without any modifications, significantly enhancing DE performance on challenging Cityscapes and KITTI datasets, especially in the moving object regions.
Abstract:In this paper, we firstly consider view-dependent effects into single image-based novel view synthesis (NVS) problems. For this, we propose to exploit the camera motion priors in NVS to model view-dependent appearance or effects (VDE) as the negative disparity in the scene. By recognizing specularities "follow" the camera motion, we infuse VDEs into the input images by aggregating input pixel colors along the negative depth region of the epipolar lines. Also, we propose a `relaxed volumetric rendering' approximation that allows computing the densities in a single pass, improving efficiency for NVS from single images. Our method can learn single-image NVS from image sequences only, which is a completely self-supervised learning method, for the first time requiring neither depth nor camera pose annotations. We present extensive experiment results and show that our proposed method can learn NVS with VDEs, outperforming the SOTA single-view NVS methods on the RealEstate10k and MannequinChallenge datasets.
Abstract:Recent advances in neural rendering have shown that, albeit slow, implicit compact models can learn a scene's geometries and view-dependent appearances from multiple views. To maintain such a small memory footprint but achieve faster inference times, recent works have adopted `sampler' networks that adaptively sample a small subset of points along each ray in the implicit neural radiance fields. Although these methods achieve up to a 10$\times$ reduction in rendering time, they still suffer from considerable quality degradation compared to the vanilla NeRF. In contrast, we propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes). ProNeRF is equipped with a novel projection-aware sampling (PAS) network together with a new training strategy for ray exploration and exploitation, allowing for efficient fine-grained particle sampling. Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel. Our exploration and exploitation training strategy allows ProNeRF to learn the full scenes' color and density distributions while also learning efficient ray sampling focused on the highest-density regions. We provide extensive experimental results that support the effectiveness of our method on the widely adopted forward-facing and 360 datasets, LLFF and Blender, respectively.
Abstract:Recently, neural network (NN)-based image compression studies have actively been made and has shown impressive performance in comparison to traditional methods. However, most of the works have focused on non-scalable image compression (single-layer coding) while spatially scalable image compression has drawn less attention although it has many applications. In this paper, we propose a novel NN-based spatially scalable image compression method, called COMPASS, which supports arbitrary-scale spatial scalability. Our proposed COMPASS has a very flexible structure where the number of layers and their respective scale factors can be arbitrarily determined during inference. To reduce the spatial redundancy between adjacent layers for arbitrary scale factors, our COMPASS adopts an inter-layer arbitrary scale prediction method, called LIFF, based on implicit neural representation. We propose a combined RD loss function to effectively train multiple layers. Experimental results show that our COMPASS achieves BD-rate gain of -58.33% and -47.17% at maximum compared to SHVC and the state-of-the-art NN-based spatially scalable image compression method, respectively, for various combinations of scale factors. Our COMPASS also shows comparable or even better coding efficiency than the single-layer coding for various scale factors.