Abstract:Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals across modalities remains underexplored. This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts. We introduce a novel evaluation framework that systematically challenges five state-of-the-art models (including GPT-4o, Claude, and Gemini) using adversarial ASCII art, where character-level semantics deliberately contradict global visual patterns. Our experiments reveal a strong text-priority bias: VLMs consistently prioritize textual information over visual patterns, with visual recognition ability declining dramatically as semantic complexity increases. Various mitigation attempts through visual parameter tuning and prompt engineering yielded only modest improvements, suggesting that this limitation requires architectural-level solutions. These findings uncover fundamental flaws in how current VLMs integrate multimodal information, providing important guidance for future model development while highlighting significant implications for content moderation systems vulnerable to adversarial examples.
Abstract:Visual Language Models (VLMs) have become foundational models for document understanding tasks, widely used in the processing of complex multimodal documents across domains such as finance, law, and academia. However, documents often contain noise-like information, such as watermarks, which inevitably leads us to inquire: \emph{Do watermarks degrade the performance of VLMs in document understanding?} To address this, we propose a novel evaluation framework to investigate the effect of visible watermarks on VLMs performance. We takes into account various factors, including different types of document data, the positions of watermarks within documents and variations in watermark content. Our experimental results reveal that VLMs performance can be significantly compromised by watermarks, with performance drop rates reaching up to 36\%. We discover that \emph{scattered} watermarks cause stronger interference than centralized ones, and that \emph{semantic contents} in watermarks creates greater disruption than simple visual occlusion. Through attention mechanism analysis and embedding similarity examination, we find that the performance drops are mainly attributed to that watermarks 1) force widespread attention redistribution, and 2) alter semantic representation in the embedding space. Our research not only highlights significant challenges in deploying VLMs for document understanding, but also provides insights towards developing robust inference mechanisms on watermarked documents.
Abstract:Modern Vision-Language Models (VLMs) exhibit remarkable visual and linguistic capabilities, achieving impressive performance in various tasks such as image recognition and object localization. However, their effectiveness in fine-grained tasks remains an open question. In everyday scenarios, individuals encountering design materials, such as magazines, typography tutorials, research papers, or branding content, may wish to identify aesthetically pleasing fonts used in the text. Given their multimodal capabilities and free accessibility, many VLMs are often considered potential tools for font recognition. This raises a fundamental question: Do VLMs truly possess the capability to recognize fonts? To investigate this, we introduce the Font Recognition Benchmark (FRB), a compact and well-structured dataset comprising 15 commonly used fonts. FRB includes two versions: (i) an easy version, where 10 sentences are rendered in different fonts, and (ii) a hard version, where each text sample consists of the names of the 15 fonts themselves, introducing a stroop effect that challenges model perception. Through extensive evaluation of various VLMs on font recognition tasks, we arrive at the following key findings: (i) Current VLMs exhibit limited font recognition capabilities, with many state-of-the-art models failing to achieve satisfactory performance. (ii) Few-shot learning and Chain-of-Thought (CoT) prompting provide minimal benefits in improving font recognition accuracy across different VLMs. (iii) Attention analysis sheds light on the inherent limitations of VLMs in capturing semantic features.
Abstract:Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
Abstract:Recent reasoning large language models (LLMs) have demonstrated remarkable improvements in mathematical reasoning capabilities through long Chain-of-Thought. The reasoning tokens of these models enable self-correction within reasoning chains, enhancing robustness. This motivates our exploration: how vulnerable are reasoning LLMs to subtle errors in their input reasoning chains? We introduce "Compromising Thought" (CPT), a vulnerability where models presented with reasoning tokens containing manipulated calculation results tend to ignore correct reasoning steps and adopt incorrect results instead. Through systematic evaluation across multiple reasoning LLMs, we design three increasingly explicit prompting methods to measure CPT resistance, revealing that models struggle significantly to identify and correct these manipulations. Notably, contrary to existing research suggesting structural alterations affect model performance more than content modifications, we find that local ending token manipulations have greater impact on reasoning outcomes than structural changes. Moreover, we discover a security vulnerability in DeepSeek-R1 where tampered reasoning tokens can trigger complete reasoning cessation. Our work enhances understanding of reasoning robustness and highlights security considerations for reasoning-intensive applications.
Abstract:While safety mechanisms have significantly progressed in filtering harmful text inputs, MLLMs remain vulnerable to multimodal jailbreaks that exploit their cross-modal reasoning capabilities. We present MIRAGE, a novel multimodal jailbreak framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models (MLLMs). By systematically decomposing the toxic query into environment, role, and action triplets, MIRAGE constructs a multi-turn visual storytelling sequence of images and text using Stable Diffusion, guiding the target model through an engaging detective narrative. This process progressively lowers the model's defences and subtly guides its reasoning through structured contextual cues, ultimately eliciting harmful responses. In extensive experiments on the selected datasets with six mainstream MLLMs, MIRAGE achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines. Moreover, we demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards. These results highlight critical weaknesses in current multimodal safety mechanisms and underscore the urgent need for more robust defences against cross-modal threats.
Abstract:Recently, patch-deformation methods have exhibited significant effectiveness in multi-view stereo owing to the deformable and expandable patches in reconstructing textureless areas. However, such methods primarily emphasize broadening the receptive field in textureless areas, while neglecting deformation instability caused by easily overlooked edge-skipping, potentially leading to matching distortions. To address this, we propose SED-MVS, which adopts panoptic segmentation and multi-trajectory diffusion strategy for segmentation-driven and edge-aligned patch deformation. Specifically, to prevent unanticipated edge-skipping, we first employ SAM2 for panoptic segmentation as depth-edge guidance to guide patch deformation, followed by multi-trajectory diffusion strategy to ensure patches are comprehensively aligned with depth edges. Moreover, to avoid potential inaccuracy of random initialization, we combine both sparse points from LoFTR and monocular depth map from DepthAnything V2 to restore reliable and realistic depth map for initialization and supervised guidance. Finally, we integrate segmentation image with monocular depth map to exploit inter-instance occlusion relationship, then further regard them as occlusion map to implement two distinct edge constraint, thereby facilitating occlusion-aware patch deformation. Extensive results on ETH3D, Tanks & Temples, BlendedMVS and Strecha datasets validate the state-of-the-art performance and robust generalization capability of our proposed method.
Abstract:In the realm of large vision-language models (LVLMs), adversarial jailbreak attacks serve as a red-teaming approach to identify safety vulnerabilities of these models and their associated defense mechanisms. However, we identify a critical limitation: not every adversarial optimization step leads to a positive outcome, and indiscriminately accepting optimization results at each step may reduce the overall attack success rate. To address this challenge, we introduce HKVE (Hierarchical Key-Value Equalization), an innovative jailbreaking framework that selectively accepts gradient optimization results based on the distribution of attention scores across different layers, ensuring that every optimization step positively contributes to the attack. Extensive experiments demonstrate HKVE's significant effectiveness, achieving attack success rates of 75.08% on MiniGPT4, 85.84% on LLaVA and 81.00% on Qwen-VL, substantially outperforming existing methods by margins of 20.43\%, 21.01\% and 26.43\% respectively. Furthermore, making every step effective not only leads to an increase in attack success rate but also allows for a reduction in the number of iterations, thereby lowering computational costs. Warning: This paper contains potentially harmful example data.
Abstract:Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-$\alpha$, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-$\alpha$ into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
Abstract:Medical question-answering (QA) is a critical task for evaluating how effectively large language models (LLMs) encode clinical knowledge and assessing their potential applications in medicine. Despite showing promise on multiple-choice tests, LLMs frequently struggle with open-ended medical questions, producing responses with dangerous hallucinations or lacking comprehensive coverage of critical aspects. Existing approaches attempt to address these challenges through domain-specific fine-tuning, but this proves resource-intensive and difficult to scale across models. To improve the comprehensiveness and factuality of medical responses, we propose a novel approach utilizing structured medical reasoning. Our method guides LLMs through an seven-step cognitive process inspired by clinical diagnosis, enabling more accurate and complete answers without additional training. Experiments on the MedLFQA benchmark demonstrate that our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models. Notably, this improvement transfers to smaller models, highlighting the method's efficiency and scalability. Our code and datasets are available.