Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce $\mathrm{Derf}(x) = \mathrm{erf}(αx + s)$, where $\mathrm{erf}(x)$ is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
The vast majority of the world's languages, particularly creoles like Nagamese, remain severely under-resourced in Natural Language Processing (NLP), creating a significant barrier to their representation in digital technology. This paper introduces NagaNLP, a comprehensive open-source toolkit for Nagamese, bootstrapped through a novel methodology that relies on LLM-driven but human-validated synthetic data generation. We detail a multi-stage pipeline where an expert-guided LLM (Gemini) generates a candidate corpus, which is then refined and annotated by native speakers. This synthetic-hybrid approach yielded a 10K pair conversational dataset and a high-quality annotated corpus for foundational tasks. To assess the effectiveness of our methodology, we trained both discriminative and generative models. Our fine-tuned XLM-RoBERTa-base model establishes a new benchmark for Nagamese, achieving a 93.81\% accuracy (0.90 F1-Macro) on Part-of-Speech tagging and a 0.75 F1-Macro on Named Entity Recognition, massively outperforming strong zero-shot baselines. Furthermore, we fine-tuned a Llama-3.2-3B Instruct model, named NagaLLaMA, which demonstrates superior performance on conversational tasks, achieving a Perplexity of 3.85, an order of magnitude improvement over its few-shot counterpart (96.76). We release the NagaNLP toolkit, including all datasets, models, and code, providing a foundational resource for a previously underserved language and a reproducible framework for reducing data scarcity in other low-resource contexts.
Automatic speech recognition for low-resource languages remains fundamentally constrained by the scarcity of labeled data and computational resources required by state-of-the-art models. We present a systematic investigation into cross-lingual continuous pretraining for low-resource languages, using Perso-Arabic languages (Persian, Arabic, and Urdu) as our primary case study. Our approach demonstrates that strategic utilization of unlabeled speech data can effectively bridge the resource gap without sacrificing recognition accuracy. We construct a 3,000-hour multilingual corpus through a scalable unlabeled data collection pipeline and employ targeted continual pretraining combined with morphologically-aware tokenization to develop a 300M parameter model that achieves performance comparable to systems 5 times larger. Our model outperforms Whisper Large v3 (1.5B parameters) on Persian and achieves competitive results on Arabic and Urdu despite using significantly fewer parameters and substantially less labeled data. These findings challenge the prevailing assumption that ASR quality scales primarily with model size, revealing instead that data relevance and strategic pretraining are more critical factors for low-resource scenarios. This work provides a practical pathway toward inclusive speech technology, enabling effective ASR for underrepresented languages without dependence on massive computational infrastructure or proprietary datasets.
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).
People living with Motor Neuron Disease (plwMND) frequently encounter speech and motor impairments that necessitate a reliance on augmentative and alternative communication (AAC) systems. This paper tackles the main challenge that traditional symbol-based AAC systems offer a limited vocabulary, while text entry solutions tend to exhibit low communication rates. To help plwMND articulate their needs about the system efficiently and effectively, we iteratively design and develop a novel multimodal text generation system called ImageTalk through a tailored proxy-user-based and an end-user-based design phase. The system demonstrates pronounced keystroke savings of 95.6%, coupled with consistent performance and high user satisfaction. We distill three design guidelines for AI-assisted text generation systems design and outline four user requirement levels tailored for AAC purposes, guiding future research in this field.




The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18\% on spontaneous and 4.8\% on repeated speech. Diarization experiments yield diarization error rates between 13.05\% and 18.26\%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
Speech-LLM models have demonstrated great performance in multi-modal and multi-task speech understanding. A typical speech-LLM paradigm is integrating speech modality with a large language model (LLM). While the Whisper encoder was frequently adopted in previous studies for speech input, it shows limitations regarding input format, model scale, and semantic performance. To this end, we propose a lightweight TTA model specialized in speech semantics for more effective LLM integration. With large-scale training of 358k hours of speech data on multilingual speech recognition (ASR), speech translation (ST) and speech-text alignment tasks, TTA is capable of producing robust cross-lingual speech representations. Extensive evaluations across diverse benchmarks, including ASR/ST, speech retrieval, and ASR-LLM performance assessments, demonstrate TTA's superiority over Whisper. Furthermore, we rigorously validate the interplay between cross-lingual capabilities and ASR/ST performance. The model weights and training recipes of TTA will be released as part of an audio understanding toolkit Auden.
Automatic speech recognition (ASR) systems have achieved remarkable performance in common conditions but often struggle to leverage long-context information in contextualized scenarios that require domain-specific knowledge, such as conference presentations. This challenge arises primarily due to constrained model context windows and the sparsity of relevant information within extensive contextual noise. To solve this, we propose the SAP$^{2}$ method, a novel framework that dynamically prunes and integrates relevant contextual keywords in two stages. Specifically, each stage leverages our proposed Speech-Driven Attention-based Pooling mechanism, enabling efficient compression of context embeddings while preserving speech-salient information. Experimental results demonstrate state-of-the-art performance of SAP$^{2}$ on the SlideSpeech and LibriSpeech datasets, achieving word error rates (WER) of 7.71% and 1.12%, respectively. On SlideSpeech, our method notably reduces biased keyword error rates (B-WER) by 41.1% compared to non-contextual baselines. SAP$^{2}$ also exhibits robust scalability, consistently maintaining performance under extensive contextual input conditions on both datasets.
In this work, we propose a streaming speech recognition framework for Amdo Tibetan, built upon a hybrid CTC/Atten-tion architecture with a context-aware dynamic chunking mechanism. The proposed strategy adaptively adjusts chunk widths based on encoding states, enabling flexible receptive fields, cross-chunk information exchange, and robust adaptation to varying speaking rates, thereby alleviating the context truncation problem of fixed-chunk methods. To further capture the linguistic characteristics of Tibetan, we construct a lexicon grounded in its orthographic principles, providing linguistically motivated modeling units. During decoding, an external language model is integrated to enhance semantic consistency and improve recognition of long sentences. Experimental results show that the proposed framework achieves a word error rate (WER) of 6.23% on the test set, yielding a 48.15% relative improvement over the fixed-chunk baseline, while significantly reducing recognition latency and maintaining performance close to global decoding.
Large Audio-Language Models (LALMs) have recently shown impressive progress in speech recognition, audio captioning, and auditory question answering. Yet, whether these models can perceive spatial dynamics, particularly the motion of sound sources, remains unclear. In this work, we uncover a systematic motion perception deficit in current ALLMs. To investigate this issue, we introduce AMPBench, the first benchmark explicitly designed to evaluate auditory motion understanding. AMPBench introduces a controlled question-answering benchmark designed to evaluate whether Audio-Language Models (LALMs) can infer the direction and trajectory of moving sound sources from binaural audio. Comprehensive quantitative and qualitative analyses reveal that current models struggle to reliably recognize motion cues or distinguish directional patterns. The average accuracy remains below 50%, underscoring a fundamental limitation in auditory spatial reasoning. Our study highlights a fundamental gap between human and model auditory spatial reasoning, providing both a diagnostic tool and new insight for enhancing spatial cognition in future Audio-Language Models.