Abstract:Generating safe and reliable trajectories for autonomous vehicles in long-tail scenarios remains a significant challenge, particularly for high-lateral-acceleration maneuvers such as sharp turns, which represent critical safety situations. Existing trajectory planners exhibit systematic failures in these scenarios due to data imbalance. This results in insufficient modelling of vehicle dynamics, road geometry, and environmental constraints in high-risk situations, leading to suboptimal or unsafe trajectory prediction when vehicles operate near their physical limits. In this paper, we introduce ReflexDiffusion, a novel inference-stage framework that enhances diffusion-based trajectory planners through reflective adjustment. Our method introduces a gradient-based adjustment mechanism during the iterative denoising process: after each standard trajectory update, we compute the gradient between the conditional and unconditional noise predictions to explicitly amplify critical conditioning signals, including road curvature and lateral vehicle dynamics. This amplification enforces strict adherence to physical constraints, particularly improving stability during high-lateral-acceleration maneuvers where precise vehicle-road interaction is paramount. Evaluated on the nuPlan Test14-hard benchmark, ReflexDiffusion achieves a 14.1% improvement in driving score for high-lateral-acceleration scenarios over the state-of-the-art (SOTA) methods. This demonstrates that inference-time trajectory optimization can effectively compensate for training data sparsity by dynamically reinforcing safety-critical constraints near handling limits. The framework's architecture-agnostic design enables direct deployment to existing diffusion-based planners, offering a practical solution for improving autonomous vehicle safety in challenging driving conditions.
Abstract:This paper presents a method for estimating significant wave height (Hs) from sparse S_pectral P_oint using a T_ransformer-based approach (SPT). Based on empirical observations that only a minority of spectral points with strong power contribute to wave energy, the proposed SPT effectively integrates geometric and spectral characteristics of ocean surface waves to estimate Hs through multi-dimensional feature representation. The experiment reveals an intriguing phenomenon: the learned features of SPT align well with physical dispersion relations, where the contribution-score map of selected points is concentrated along dispersion curves. Compared to conventional vision networks that process image sequences and full spectra, SPT demonstrates superior performance in Hs regression while consuming significantly fewer computational resources. On a consumer-grade GPU, SPT completes the training of regression model for 1080 sea clutter image sequences within 4 minutes, showcasing its potential to reduce deployment costs for radar wave-measuring systems. The open-source implementation of SPT will be available at https://github.com/joeyee/spt
Abstract:Most jailbreak methods achieve high attack success rates (ASR) but require attacker LLMs to craft adversarial queries and/or demand high query budgets. These resource limitations make jailbreaking expensive, and the queries generated by attacker LLMs often consist of non-interpretable random prefixes. This paper introduces Lexical Anchor Tree Search (), addressing these limitations through an attacker-LLM-free method that operates purely via lexical anchor injection. LATS reformulates jailbreaking as a breadth-first tree search over multi-turn dialogues, where each node incrementally injects missing content words from the attack goal into benign prompts. Evaluations on AdvBench and HarmBench demonstrate that LATS achieves 97-100% ASR on latest GPT, Claude, and Llama models with an average of only ~6.4 queries, compared to 20+ queries required by other methods. These results highlight conversational structure as a potent and under-protected attack surface, while demonstrating superior query efficiency in an era where high ASR is readily achievable. Our code will be released to support reproducibility.
Abstract:Most colorization models condition only on a single reference, typically the first frame of the scene. However, this approach ignores other sources of conditional data, such as character sheets, background images, or arbitrary colorized frames. We propose TimeColor, a sketch-based video colorization model that supports heterogeneous, variable-count references with the use of explicit per-reference region assignment. TimeColor encodes references as additional latent frames which are concatenated temporally, permitting them to be processed concurrently in each diffusion step while keeping the model's parameter count fixed. TimeColor also uses spatiotemporal correspondence-masked attention to enforce subject-reference binding in addition to modality-disjoint RoPE indexing. These mechanisms mitigate shortcutting and cross-identity palette leakage. Experiments on SAKUGA-42M under both single- and multi-reference protocols show that TimeColor improves color fidelity, identity consistency, and temporal stability over prior baselines.




Abstract:Large Language Models (LLMs) have emerged as powerful tools for accelerating scientific discovery, yet their static knowledge and hallucination issues hinder autonomous research applications. Recent advances integrate LLMs into agentic frameworks, enabling retrieval, reasoning, and tool use for complex scientific workflows. Here, we present a domain-specialized agent designed for reliable automation of first-principles materials computations. By embedding domain expertise, the agent ensures physically coherent multi-step workflows and consistently selects convergent, well-posed parameters, thereby enabling reliable end-to-end computational execution. A new benchmark of diverse computational tasks demonstrates that our system significantly outperforms standalone LLMs in both accuracy and robustness. This work establishes a verifiable foundation for autonomous computational experimentation and represents a key step toward fully automated scientific discovery.




Abstract:Robotic arm manipulation in data-scarce settings is a highly challenging task due to the complex embodiment dynamics and diverse contexts. Recent video-based approaches have shown great promise in capturing and transferring the temporal and physical interactions by pre-training on Internet-scale video data. However, such methods are often not optimized for the embodiment-specific closed-loop control, typically suffering from high latency and insufficient grounding. In this paper, we present Vidarc (Video Diffusion for Action Reasoning and Closed-loop Control), a novel autoregressive embodied video diffusion approach augmented by a masked inverse dynamics model. By grounding video predictions with action-relevant masks and incorporating real-time feedback through cached autoregressive generation, Vidarc achieves fast, accurate closed-loop control. Pre-trained on one million cross-embodiment episodes, Vidarc surpasses state-of-the-art baselines, achieving at least a 15% higher success rate in real-world deployment and a 91% reduction in latency. We also highlight its robust generalization and error correction capabilities across previously unseen robotic platforms.
Abstract:While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
Abstract:With the widespread application of large language models (LLMs) in various fields, the security challenges they face have become increasingly prominent, especially the issue of jailbreak. These attacks induce the model to generate erroneous or uncontrolled outputs through crafted inputs, threatening the generality and security of the model. Although existing defense methods have shown some effectiveness, they often struggle to strike a balance between model generality and security. Excessive defense may limit the normal use of the model, while insufficient defense may lead to security vulnerabilities. In response to this problem, we propose a Knowledge Graph Defense Framework (KG-DF). Specifically, because of its structured knowledge representation and semantic association capabilities, Knowledge Graph(KG) can be searched by associating input content with safe knowledge in the knowledge base, thus identifying potentially harmful intentions and providing safe reasoning paths. However, traditional KG methods encounter significant challenges in keyword extraction, particularly when confronted with diverse and evolving attack strategies. To address this issue, we introduce an extensible semantic parsing module, whose core task is to transform the input query into a set of structured and secure concept representations, thereby enhancing the relevance of the matching process. Experimental results show that our framework enhances defense performance against various jailbreak attack methods, while also improving the response quality of the LLM in general QA scenarios by incorporating domain-general knowledge.
Abstract:Multimodal Dialogue Summarization (MDS) is a critical task with wide-ranging applications. To support the development of effective MDS models, robust automatic evaluation methods are essential for reducing both cost and human effort. However, such methods require a strong meta-evaluation benchmark grounded in human annotations. In this work, we introduce MDSEval, the first meta-evaluation benchmark for MDS, consisting image-sharing dialogues, corresponding summaries, and human judgments across eight well-defined quality aspects. To ensure data quality and richfulness, we propose a novel filtering framework leveraging Mutually Exclusive Key Information (MEKI) across modalities. Our work is the first to identify and formalize key evaluation dimensions specific to MDS. We benchmark state-of-the-art modal evaluation methods, revealing their limitations in distinguishing summaries from advanced MLLMs and their susceptibility to various bias.
Abstract:Target Speaker Automatic Speech Recognition (TS-ASR) aims to transcribe the speech of a specified target speaker from multi-speaker mixtures in cocktail party scenarios. Recent advancement of Large Audio-Language Models (LALMs) has already brought some new insights to TS-ASR. However, significant room for optimization remains for the TS-ASR task within the LALMs architecture. While Chain of Thoughts (CoT) and Reinforcement Learning (RL) have proven effective in certain speech tasks, TS-ASR, which requires the model to deeply comprehend speech signals, differentiate various speakers, and handle overlapping utterances is particularly well-suited to a reasoning-guided approach. Therefore, we propose a novel framework that incorporates CoT and RL training into TS-ASR for performance improvement. A novel CoT dataset of TS-ASR is constructed, and the TS-ASR model is first trained on regular data and then fine-tuned on CoT data. Finally, the model is further trained with RL using selected data to enhance generalized reasoning capabilities. Experiment results demonstrate a significant improvement of TS-ASR performance with CoT and RL training, establishing a state-of-the-art performance compared with previous works of TS-ASR on comparable datasets.