Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.
Federated Learning (FL) has been widely concerned for it enables decentralized learning while ensuring data privacy. However, most existing methods unrealistically assume that the classes encountered by local clients are fixed over time. After learning new classes, this assumption will make the model's catastrophic forgetting of old classes significantly severe. Moreover, due to the limitation of communication cost, it is challenging to use large-scale models in FL, which will affect the prediction accuracy. To address these challenges, we propose a novel framework, Federated Enhanced Transformer (FedET), which simultaneously achieves high accuracy and low communication cost. Specifically, FedET uses Enhancer, a tiny module, to absorb and communicate new knowledge, and applies pre-trained Transformers combined with different Enhancers to ensure high precision on various tasks. To address local forgetting caused by new classes of new tasks and global forgetting brought by non-i.i.d (non-independent and identically distributed) class imbalance across different local clients, we proposed an Enhancer distillation method to modify the imbalance between old and new knowledge and repair the non-i.i.d. problem. Experimental results demonstrate that FedET's average accuracy on representative benchmark datasets is 14.1% higher than the state-of-the-art method, while FedET saves 90% of the communication cost compared to the previous method.
This paper proposes Shoggoth, an efficient edge-cloud collaborative architecture, for boosting inference performance on real-time video of changing scenes. Shoggoth uses online knowledge distillation to improve the accuracy of models suffering from data drift and offloads the labeling process to the cloud, alleviating constrained resources of edge devices. At the edge, we design adaptive training using small batches to adapt models under limited computing power, and adaptive sampling of training frames for robustness and reducing bandwidth. The evaluations on the realistic dataset show 15%-20% model accuracy improvement compared to the edge-only strategy and fewer network costs than the cloud-only strategy.
Out-of-distribution (OOD) detection aims at enhancing standard deep neural networks to distinguish anomalous inputs from original training data. Previous progress has introduced various approaches where the in-distribution training data and even several OOD examples are prerequisites. However, due to privacy and security, auxiliary data tends to be impractical in a real-world scenario. In this paper, we propose a data-free method without training on natural data, called Class-Conditional Impressions Reappearing (C2IR), which utilizes image impressions from the fixed model to recover class-conditional feature statistics. Based on that, we introduce Integral Probability Metrics to estimate layer-wise class-conditional deviations and obtain layer weights by Measuring Gradient-based Importance (MGI). The experiments verify the effectiveness of our method and indicate that C2IR outperforms other post-hoc methods and reaches comparable performance to the full access (ID and OOD) detection method, especially in the far-OOD dataset (SVHN).
Data-Free Knowledge Distillation (DFKD) has recently attracted growing attention in the academic community, especially with major breakthroughs in computer vision. Despite promising results, the technique has not been well applied to audio and signal processing. Due to the variable duration of audio signals, it has its own unique way of modeling. In this work, we propose feature-rich audio model inversion (FRAMI), a data-free knowledge distillation framework for general sound classification tasks. It first generates high-quality and feature-rich Mel-spectrograms through a feature-invariant contrastive loss. Then, the hidden states before and after the statistics pooling layer are reused when knowledge distillation is performed on these feature-rich samples. Experimental results on the Urbansound8k, ESC-50, and audioMNIST datasets demonstrate that FRAMI can generate feature-rich samples. Meanwhile, the accuracy of the student model is further improved by reusing the hidden state and significantly outperforms the baseline method.
Unsupervised representation learning for speech audios attained impressive performances for speech recognition tasks, particularly when annotated speech is limited. However, the unsupervised paradigm needs to be carefully designed and little is known about what properties these representations acquire. There is no guarantee that the model learns meaningful representations for valuable information for recognition. Moreover, the adaptation ability of the learned representations to other domains still needs to be estimated. In this work, we explore learning domain-invariant representations via a direct mapping of speech representations to their corresponding high-level linguistic informations. Results prove that the learned latents not only capture the articulatory feature of each phoneme but also enhance the adaptation ability, outperforming the baseline largely on accented benchmarks.
Pose Guided Human Image Synthesis (PGHIS) is a challenging task of transforming a human image from the reference pose to a target pose while preserving its style. Most existing methods encode the texture of the whole reference human image into a latent space, and then utilize a decoder to synthesize the image texture of the target pose. However, it is difficult to recover the detailed texture of the whole human image. To alleviate this problem, we propose a method by decoupling the human body into several parts (\eg, hair, face, hands, feet, \etc) and then using each of these parts to guide the synthesis of a realistic image of the person, which preserves the detailed information of the generated images. In addition, we design a multi-head attention-based module for PGHIS. Because most convolutional neural network-based methods have difficulty in modeling long-range dependency due to the convolutional operation, the long-range modeling capability of attention mechanism is more suitable than convolutional neural networks for pose transfer task, especially for sharp pose deformation. Extensive experiments on Market-1501 and DeepFashion datasets reveal that our method almost outperforms other existing state-of-the-art methods in terms of both qualitative and quantitative metrics.
The Transformer architecture model, based on self-attention and multi-head attention, has achieved remarkable success in offline end-to-end Automatic Speech Recognition (ASR). However, self-attention and multi-head attention cannot be easily applied for streaming or online ASR. For self-attention in Transformer ASR, the softmax normalization function-based attention mechanism makes it impossible to highlight important speech information. For multi-head attention in Transformer ASR, it is not easy to model monotonic alignments in different heads. To overcome these two limits, we integrate sparse attention and monotonic attention into Transformer-based ASR. The sparse mechanism introduces a learned sparsity scheme to enable each self-attention structure to fit the corresponding head better. The monotonic attention deploys regularization to prune redundant heads for the multi-head attention structure. The experiments show that our method can effectively improve the attention mechanism on widely used benchmarks of speech recognition.
Buddhism is an influential religion with a long-standing history and profound philosophy. Nowadays, more and more people worldwide aspire to learn the essence of Buddhism, attaching importance to Buddhism dissemination. However, Buddhist scriptures written in classical Chinese are obscure to most people and machine translation applications. For instance, general Chinese-English neural machine translation (NMT) fails in this domain. In this paper, we proposed a novel approach to building a practical NMT model for Buddhist scriptures. The performance of our translation pipeline acquired highly promising results in ablation experiments under three criteria.
Nonparallel multi-domain voice conversion methods such as the StarGAN-VCs have been widely applied in many scenarios. However, the training of these models usually poses a challenge due to their complicated adversarial network architectures. To address this, in this work we leverage the state-of-the-art contrastive learning techniques and incorporate an efficient Siamese network structure into the StarGAN discriminator. Our method is called SimSiam-StarGAN-VC and it boosts the training stability and effectively prevents the discriminator overfitting issue in the training process. We conduct experiments on the Voice Conversion Challenge (VCC 2018) dataset, plus a user study to validate the performance of our framework. Our experimental results show that SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC methods in terms of both the objective and subjective metrics.