Abstract:While vision-language-action (VLA) models for embodied agents integrate perception, reasoning, and control, they remain constrained by two critical weaknesses: first, during grasping tasks, the action tokens generated by the language model often exhibit subtle spatial deviations from the target object, resulting in grasp failures; second, they lack the ability to reliably recognize task completion, which leads to redundant actions and frequent timeout errors. To address these challenges and enhance robustness, we propose a lightweight, training-free framework, VLA-SCT. This framework operates as a self-correcting control loop, combining data-driven action refinement with conditional logic for termination. Consequently, compared to baseline approaches, our method achieves consistent improvements across all datasets in the LIBERO benchmark, significantly increasing the success rate of fine manipulation tasks and ensuring accurate task completion, thereby promoting the deployment of more reliable VLA agents in complex, unstructured environments.
Abstract:The emergence of Large Audio-Language Models (LALMs) has advanced Speech Emotion Recognition (SER), but their size limits deployment in resource-constrained environments. While Knowledge Distillation is effective for LALM compression, existing methods remain underexplored in distilling the cross-modal projection module (Projector), and often struggle with alignment due to differences in feature dimensions. We propose PL-Distill, a KD framework that combines Projector-Level Distillation (PDist) to align audio embeddings and Logits-Level Distillation (LDist) to align output logits. PDist introduces Attention-weighted Centered Kernel Alignment, a novel approach we propose to highlight important time steps and address dimension mismatches. Meanwhile, LDist minimizes the Kullback-Leibler divergence between teacher and student logits from audio and text modalities. On IEMOCAP, RAVDESS, and SAVEE, PL-Distill compresses an 8.4B-parameter teacher to a compact 1.1B-parameter student, consistently outperforming the teacher, state-of-the-art pretrained models, and other KD baselines across all metrics.
Abstract:Recent advances in Vision-Language-Action (VLA) models have shown promise for robot control, but their dependence on action supervision limits scalability and generalization. To address this challenge, we introduce CARE, a novel framework designed to train VLA models for robotic task execution. Unlike existing methods that depend on action annotations during pretraining, CARE eliminates the need for explicit action labels by leveraging only video-text pairs. These weakly aligned data sources enable the model to learn continuous latent action representations through a newly designed multi-task pretraining objective. During fine-tuning, a small set of labeled data is used to train the action head for control. Experimental results across various simulation tasks demonstrate CARE's superior success rate, semantic interpretability, and ability to avoid shortcut learning. These results underscore CARE's scalability, interpretability, and effectiveness in robotic control with weak supervision.
Abstract:Vision-Language Models (VLMs) face significant computational challenges in video processing due to massive data redundancy, which creates prohibitively long token sequences. To address this, we introduce Triage, a training-free, plug-and-play framework that reframes video reasoning as a resource allocation problem via hierarchical visual budgeting. Its first stage, Frame-Level Budgeting, identifies keyframes by evaluating their visual dynamics and relevance, generating a strategic prior based on their importance scores. Guided by this prior, the second stage, Token-Level Budgeting, allocates tokens in two phases: it first secures high-relevance Core Tokens, followed by diverse Context Tokens selected with an efficient batched Maximal Marginal Relevance (MMR) algorithm. Extensive experiments demonstrate that Triage improves inference speed and reduces memory footprint, while maintaining or surpassing the performance of baselines and other methods on various video reasoning benchmarks.
Abstract:Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Abstract:Recent advances in large language models (LLMs) have substantially accelerated the development of embodied agents. LLM-based multi-agent systems mitigate the inefficiency of single agents in complex tasks. However, they still suffer from issues such as memory inconsistency and agent behavioral conflicts. To address these challenges, we propose MiTa, a hierarchical memory-integrated task allocative framework to enhance collaborative efficiency. MiTa organizes agents into a manager-member hierarchy, where the manager incorporates additional allocation and summary modules that enable (1) global task allocation and (2) episodic memory integration. The allocation module enables the manager to allocate tasks from a global perspective, thereby avoiding potential inter-agent conflicts. The summary module, triggered by task progress updates, performs episodic memory integration by condensing recent collaboration history into a concise summary that preserves long-horizon context. By combining task allocation with episodic memory, MiTa attains a clearer understanding of the task and facilitates globally consistent task distribution. Experimental results confirm that MiTa achieves superior efficiency and adaptability in complex multi-agent cooperation over strong baseline methods.
Abstract:Although Large Audio-Language Models (LALMs) have exhibited outstanding performance in auditory understanding, their performance in affective computing scenarios, particularly in emotion recognition, reasoning, and subtle sentiment differentiation, remains suboptimal. Recent advances in Reinforcement Learning (RL) have shown promise in improving LALMs' reasoning abilities. However, two critical challenges hinder the direct application of RL techniques to Speech Emotion Recognition (SER) tasks: (1) convergence instability caused by ambiguous emotional boundaries and (2) limited reasoning ability when using relatively small models (e.g., 7B-parameter architectures). To overcome these limitations, we introduce EMO-RL, a novel framework incorporating reinforcement learning with two key innovations: Emotion Similarity-Weighted Reward (ESWR) and Explicit Structured Reasoning (ESR). Built upon pretrained LALMs, our method employs group-relative policy optimization with emotion constraints. Comprehensive experiments demonstrate that our EMO-RL training strategies can significantly enhance the emotional reasoning capabilities of LALMs, attaining state-of-the-art results on both the MELD and IEMOCAP datasets, and cross-dataset experiments prove the strong superiority of generalization.
Abstract:One of the primary challenges in optimizing large language models (LLMs) for long-context inference lies in the high memory consumption of the Key-Value (KV) cache. Existing approaches, such as quantization, have demonstrated promising results in reducing memory usage. However, current quantization methods cannot take both effectiveness and efficiency into account. In this paper, we propose MoQAE, a novel mixed-precision quantization method via mixture of quantization-aware experts. First, we view different quantization bit-width configurations as experts and use the traditional mixture of experts (MoE) method to select the optimal configuration. To avoid the inefficiency caused by inputting tokens one by one into the router in the traditional MoE method, we input the tokens into the router chunk by chunk. Second, we design a lightweight router-only fine-tuning process to train MoQAE with a comprehensive loss to learn the trade-off between model accuracy and memory usage. Finally, we introduce a routing freezing (RF) and a routing sharing (RS) mechanism to further reduce the inference overhead. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art KV cache quantization approaches in both efficiency and effectiveness.




Abstract:Previous continual learning setups for embodied intelligence focused on executing low-level actions based on human commands, neglecting the ability to learn high-level planning and multi-level knowledge. To address these issues, we propose the Hierarchical Embodied Continual Learning Setups (HEC) that divide the agent's continual learning process into two layers: high-level instructions and low-level actions, and define five embodied continual learning sub-setups. Building on these setups, we introduce the Task-aware Mixture of Incremental LoRA Experts (Task-aware MoILE) method. This approach achieves task recognition by clustering visual-text embeddings and uses both a task-level router and a token-level router to select the appropriate LoRA experts. To effectively address the issue of catastrophic forgetting, we apply Singular Value Decomposition (SVD) to the LoRA parameters obtained from prior tasks, preserving key components while orthogonally training the remaining parts. The experimental results show that our method stands out in reducing the forgetting of old tasks compared to other methods, effectively supporting agents in retaining prior knowledge while continuously learning new tasks.




Abstract:Generalizability, the capacity of a robust model to perform effectively on unseen data, is crucial for audio deepfake detection due to the rapid evolution of text-to-speech (TTS) and voice conversion (VC) technologies. A promising approach to differentiate between bonafide and spoof samples lies in identifying intrinsic disparities to enhance model generalizability. From an information-theoretic perspective, we hypothesize the information content is one of the intrinsic differences: bonafide sample represents a dense, information-rich sampling of the real world, whereas spoof sample is typically derived from lower-dimensional, less informative representations. To implement this, we introduce frame-level latent information entropy detector(f-InfoED), a framework that extracts distinctive information entropy from latent representations at the frame level to identify audio deepfakes. Furthermore, we present AdaLAM, which extends large pre-trained audio models with trainable adapters for enhanced feature extraction. To facilitate comprehensive evaluation, the audio deepfake forensics 2024 (ADFF 2024) dataset was built by the latest TTS and VC methods. Extensive experiments demonstrate that our proposed approach achieves state-of-the-art performance and exhibits remarkable generalization capabilities. Further analytical studies confirms the efficacy of AdaLAM in extracting discriminative audio features and f-InfoED in leveraging latent entropy information for more generalized deepfake detection.