Information extraction is the process of automatically extracting structured information from unstructured text data.
Early identification of stroke symptoms is essential for enabling timely intervention and improving patient outcomes, particularly in prehospital settings. This study presents a fast, non-invasive multimodal deep learning framework for automatic binary stroke screening based on data collected during the F.A.S.T. assessment. The proposed approach integrates complementary information from facial expressions, speech signals, and upper-body movements to enhance diagnostic robustness. Facial dynamics are represented using landmark based features and modeled with a Transformer architecture to capture temporal dependencies. Speech signals are converted into mel spectrograms and processed using an Audio Spectrogram Transformer, while upper-body pose sequences are analyzed with an MLP-Mixer network to model spatiotemporal motion patterns. The extracted modality specific representations are combined through an attention-based fusion mechanism to effectively learn cross modal interactions. Experiments conducted on a self-collected dataset of 222 videos from 37 subjects demonstrate that the proposed multimodal model consistently outperforms unimodal baselines, achieving 95.83% accuracy and a 96.00% F1-score. The model attains a strong balance between sensitivity and specificity and successfully detects all stroke cases in the test set. These results highlight the potential of multimodal learning and transfer learning for early stroke screening, while emphasizing the need for larger, clinically representative datasets to support reliable real-world deployment.
Constructing Knowledge Graphs (KGs) from unstructured text provides a structured framework for knowledge representation and reasoning, yet current LLM-based approaches struggle with a fundamental trade-off: factual coverage often leads to relational fragmentation, while premature consolidation causes information loss. To address this, we propose SocraticKG, an automated KG construction method that introduces question-answer pairs as a structured intermediate representation to systematically unfold document-level semantics prior to triple extraction. By employing 5W1H-guided QA expansion, SocraticKG captures contextual dependencies and implicit relational links typically lost in direct KG extraction pipelines, providing explicit grounding in the source document that helps mitigate implicit reasoning errors. Evaluation on the MINE benchmark demonstrates that our approach effectively addresses the coverage-connectivity trade-off, achieving superior factual retention while maintaining high structural cohesion even as extracted knowledge volume substantially expands. These results highlight that QA-mediated semantic scaffolding plays a critical role in structuring semantics prior to KG extraction, enabling more coherent and reliable graph construction in subsequent stages.
Recent advances in transformer-based lightweight object tracking have established new standards across benchmarks, leveraging the global receptive field and powerful feature extraction capabilities of attention mechanisms. Despite these achievements, existing methods universally employ sparse sampling during training--utilizing only one template and one search image per sequence--which fails to comprehensively explore spatiotemporal information in videos. This limitation constrains performance and cause the gap between lightweight and high-performance trackers. To bridge this divide while maintaining real-time efficiency, we propose STDTrack, a framework that pioneers the integration of reliable spatiotemporal dependencies into lightweight trackers. Our approach implements dense video sampling to maximize spatiotemporal information utilization. We introduce a temporally propagating spatiotemporal token to guide per-frame feature extraction. To ensure comprehensive target state representation, we disign the Multi-frame Information Fusion Module (MFIFM), which augments current dependencies using historical context. The MFIFM operates on features stored in our constructed Spatiotemporal Token Maintainer (STM), where a quality-based update mechanism ensures information reliability. Considering the scale variation among tracking targets, we develop a multi-scale prediction head to dynamically adapt to objects of different sizes. Extensive experiments demonstrate state-of-the-art results across six benchmarks. Notably, on GOT-10k, STDTrack rivals certain high-performance non-real-time trackers (e.g., MixFormer) while operating at 192 FPS(GPU) and 41 FPS(CPU).
Music Cover Retrieval, also known as Version Identification, aims to recognize distinct renditions of the same underlying musical work, a task central to catalog management, copyright enforcement, and music retrieval. State-of-the-art approaches have largely focused on harmonic and melodic features, employing increasingly complex audio pipelines designed to be invariant to musical attributes that often vary widely across covers. While effective, these methods demand substantial training time and computational resources. By contrast, lyrics constitute a strong invariant across covers, though their use has been limited by the difficulty of extracting them accurately and efficiently from polyphonic audio. Early methods relied on simple frameworks that limited downstream performance, while more recent systems deliver stronger results but require large models integrated within complex multimodal architectures. We introduce LIVI (Lyrics-Informed Version Identification), an approach that seeks to balance retrieval accuracy with computational efficiency. First, LIVI leverages supervision from state-of-the-art transcription and text embedding models during training to achieve retrieval accuracy on par with--or superior to--harmonic-based systems. Second, LIVI remains lightweight and efficient by removing the transcription step at inference, challenging the dominance of complexity-heavy pipelines.
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
Multimodal retrieval has emerged as a promising yet challenging research direction in recent years. Most existing studies in multimodal retrieval focus on capturing information in multimodal data that is similar to their paired texts, but often ignores the complementary information contained in multimodal data. In this study, we propose CIEA, a novel multimodal retrieval approach that employs Complementary Information Extraction and Alignment, which transforms both text and images in documents into a unified latent space and features a complementary information extractor designed to identify and preserve differences in the image representations. We optimize CIEA using two complementary contrastive losses to ensure semantic integrity and effectively capture the complementary information contained in images. Extensive experiments demonstrate the effectiveness of CIEA, which achieves significant improvements over both divide-and-conquer models and universal dense retrieval models. We provide an ablation study, further discussions, and case studies to highlight the advancements achieved by CIEA. To promote further research in the community, we have released the source code at https://github.com/zengdlong/CIEA.
Municipal meeting minutes record key decisions in local democratic processes. Unlike parliamentary proceedings, which typically adhere to standardized formats, they encode voting outcomes in highly heterogeneous, free-form narrative text that varies widely across municipalities, posing significant challenges for automated extraction. In this paper, we introduce VotIE (Voting Information Extraction), a new information extraction task aimed at identifying structured voting events in narrative deliberative records, and establish the first benchmark for this task using Portuguese municipal minutes, building on the recently introduced CitiLink corpus. Our experiments yield two key findings. First, under standard in-domain evaluation, fine-tuned encoders, specifically XLM-R-CRF, achieve the strongest performance, reaching 93.2\% macro F1, outperforming generative approaches. Second, in a cross-municipality setting that evaluates transfer to unseen administrative contexts, these models suffer substantial performance degradation, whereas few-shot LLMs demonstrate greater robustness, with significantly smaller declines in performance. Despite this generalization advantage, the high computational cost of generative models currently constrains their practicality. As a result, lightweight fine-tuned encoders remain a more practical option for large-scale, real-world deployment. To support reproducible research in administrative NLP, we publicly release our benchmark, trained models, and evaluation framework.
Ground Vibration Testing (GVT) supports aircraft certification but often requires lengthy and costly campaigns. Propeller-driven Vibration Testing (PVT) is assessed here as an output-only alternative, in line with Operational Modal Analysis approaches such as Taxi Vibration Testing and Flight Vibration Testing. A cantilever Aluminium 7075-T6 wing spar is instrumented with seven accelerometers and excited by an outboard electric motor and propeller. Seven runs are carried out: a motor-off baseline, five constant-throttle cases, and a manual up-down throttle sweep. The acquired spectra indicate that the dominant resonances remain observable under propeller excitation, while low-throttle conditions introduce narrowband harmonics that may mask structural peaks; the sweep reduces persistent overlap. Modal parameters are identified for the baseline and sweep cases using the Natural Excitation Technique with the Loewner Framework (NExT-LF). The first two modes remain closely matched (Modal Assurance Criterion (MAC) > 0.99), whereas the third mode shows reduced repeatability (MAC = 0.827) and a larger frequency shift, consistent with propeller-induced bending--torsion coupling and non-ideal sweep control. Overall, PVT provides a viable complement to GVT for extracting low-frequency modal information and motivates pursuing future work on automated throttle scheduling and coupling-aware test planning.
Large Language Models (LLMs) face the "knowledge cutoff" challenge, where their frozen parametric memory prevents direct internalization of new information. While Supervised Fine-Tuning (SFT) is commonly used to update model knowledge, it often updates factual content without reliably improving the model's ability to use the newly incorporated information for question answering or decision-making. Reinforcement Learning (RL) is essential for acquiring reasoning skills; however, its high computational cost makes it impractical for efficient online adaptation. We empirically observe that the parameter updates induced by SFT and RL are nearly orthogonal. Based on this observation, we propose Parametric Skill Transfer (PaST), a framework that supports modular skill transfer for efficient and effective knowledge adaptation. By extracting a domain-agnostic Skill Vector from a source domain, we can linearly inject knowledge manipulation skills into a target model after it has undergone lightweight SFT on new data. Experiments on knowledge-incorporation QA (SQuAD, LooGLE) and agentic tool-use benchmarks (ToolBench) demonstrate the effectiveness of our method. On SQuAD, PaST outperforms the state-of-the-art self-editing SFT baseline by up to 9.9 points. PaST further scales to long-context QA on LooGLE with an 8.0-point absolute accuracy gain, and improves zero-shot ToolBench success rates by +10.3 points on average with consistent gains across tool categories, indicating strong scalability and cross-domain transferability of the Skill Vector.
Recent advances in end-to-end autonomous driving show that policies trained on patch-aligned features extracted from foundation models generalize better to Out-of-Distribution (OOD). We hypothesize that due to the self-attention mechanism, each patch feature implicitly embeds/contains information from all other patches, represented in a different way and intensity, making these descriptors highly redundant. We quantify redundancy in such (BLIP2) features via PCA and cross-patch similarity: $90$% of variance is captured by $17/64$ principal components, and strong inter-token correlations are pervasive. Training on such overlapping information leads the policy to overfit spurious correlations, hurting OOD robustness. We present Stochastic-Patch-Selection (SPS), a simple yet effective approach for learning policies that are more robust, generalizable, and efficient. For every frame, SPS randomly masks a fraction of patch descriptors, not feeding them to the policy model, while preserving the spatial layout of the remaining patches. Thus, the policy is provided with different stochastic but complete views of the (same) scene: every random subset of patches acts like a different, yet still sensible, coherent projection of the world. The policy thus bases its decisions on features that are invariant to which specific tokens survive. Extensive experiments confirm that across all OOD scenarios, our method outperforms the state of the art (SOTA), achieving a $6.2$% average improvement and up to $20.4$% in closed-loop simulations, while being $2.4\times$ faster. We conduct ablations over masking rates and patch-feature reorganization, training and evaluating 9 systems, with 8 of them surpassing prior SOTA. Finally, we show that the same learned policy transfers to a physical, real-world car without any tuning.