Information extraction is the process of automatically extracting structured information from unstructured text data.
Personality detection aims to measure an individual's corresponding personality traits through their social media posts. The advancements in Large Language Models (LLMs) offer novel perspectives for personality detection tasks. Existing approaches enhance personality trait analysis by leveraging LLMs to extract semantic information from textual posts as prompts, followed by training classifiers for categorization. However, accurately classifying personality traits remains challenging due to the inherent complexity of human personality and subtle inter-trait distinctions. Moreover, prompt-based methods often exhibit excessive dependency on expert-crafted knowledge without autonomous pattern-learning capacity. To address these limitations, we view personality detection as a ranking task rather than a classification and propose a corresponding reinforcement learning training paradigm. First, we employ supervised fine-tuning (SFT) to establish personality trait ranking capabilities while enforcing standardized output formats, creating a robust initialization. Subsequently, we introduce Group Relative Policy Optimization (GRPO) with a specialized ranking-based reward function. Unlike verification tasks with definitive solutions, personality assessment involves subjective interpretations and blurred boundaries between trait categories. Our reward function explicitly addresses this challenge by training LLMs to learn optimal answer rankings. Comprehensive experiments have demonstrated that our method achieves state-of-the-art performance across multiple personality detection benchmarks.
Spatial information is a critical clue for multi-channel multi-speaker target speech recognition. Most state-of-the-art multi-channel Automatic Speech Recognition (ASR) systems extract spatial features only during the speech separation stage, followed by standard single-channel ASR on the separated speech. This approach results in an inefficient, lengthy pipeline and sub-optimal ASR performance due to the accumulated errors from preprocessing modules. Furthermore, most spatial feature extraction methods depend on the knowledge of speaker positions and microphone topology, making the systems reliant on specific settings and challenging to adapt to new equipment. In this work, we propose a solution to these issues with a lightweight embedding module named SpatialEmb, which extracts and encodes spatial information directly for the ASR model, supporting both fixed and arbitrary microphone topology. We conduct comprehensive experiments on AliMeeting, a real meeting corpus, to determine the optimal model design for SpatialEmb in terms of both performance and efficiency. Our best model trained with 105 hours Train-Ali-far achieves 17.04% and 20.32% character error rates (CER) on the Eval and Test sets, establishing a new state-of-the-art result with the same training data.
This paper presents an end-to-end deep learning framework for electromagnetically reconfigurable antenna (ERA)-aided user localization with active sensing, where ERAs provide additional electromagnetic reconfigurability to diversify the received measurements and enhance localization informativeness. To balance sensing flexibility and overhead, we adopt a two-timescale design: the digital combiner is updated at each stage, while the ERA patterns are reconfigured at each substage via a spherical-harmonic representation. The proposed mechanism integrates attention-based feature extraction and LSTM-based temporal learning, enabling the system to learn an optimized sensing strategy and progressively refine the UE position estimate from sequential observations. Simulation results show that the proposed approach consistently outperforms conventional digital beamforming-only and single-stage sensing baselines in terms of localization accuracy. These results highlight the effectiveness of ERA-enabled active sensing for user localization in future wireless systems.
High-dimensional structural MRI (sMRI) images are widely used for Alzheimer's Disease (AD) diagnosis. Most existing methods for sMRI representation learning rely on 3D architectures (e.g., 3D CNNs), slice-wise feature extraction with late aggregation, or apply training-free feature extractions using 2D foundation models (e.g., DINO). However, these three paradigms suffer from high computational cost, loss of cross-slice relations, and limited ability to extract discriminative features, respectively. To address these challenges, we propose Multimodal Visual Surrogate Compression (MVSC). It learns to compress and adapt large 3D sMRI volumes into compact 2D features, termed as visual surrogates, which are better aligned with frozen 2D foundation models to extract powerful representations for final AD classification. MVSC has two key components: a Volume Context Encoder that captures global cross-slice context under textual guidance, and an Adaptive Slice Fusion module that aggregates slice-level information in a text-enhanced, patch-wise manner. Extensive experiments on three large-scale Alzheimer's disease benchmarks demonstrate our MVSC performs favourably on both binary and multi-class classification tasks compared against state-of-the-art methods.
Probing studies what information is encoded in a frozen LLM's layer representations by training a lightweight predictor on top of them. Beyond analysis, probes are often used operationally in probe-then-steer pipelines: a learned concept vector is extracted from a probe and injected via additive activation steering by adding it to a layer representation during the forward pass. The effectiveness of this pipeline hinges on estimating concept vectors that are accurate, directionally stable under ablation, and inexpensive to obtain. Motivated by these desiderata, we propose RAPTOR (Ridge-Adaptive Logistic Probe), a simple L2-regularized logistic probe whose validation-tuned ridge strength yields concept vectors from normalized weights. Across extensive experiments on instruction-tuned LLMs and human-written concept datasets, RAPTOR matches or exceeds strong baselines in accuracy while achieving competitive directional stability and substantially lower training cost; these quantitative results are supported by qualitative downstream steering demonstrations. Finally, using the Convex Gaussian Min-max Theorem (CGMT), we provide a mechanistic characterization of ridge logistic regression in an idealized Gaussian teacher-student model in the high-dimensional few-shot regime, explaining how penalty strength mediates probe accuracy and concept-vector stability and yielding structural predictions that qualitatively align with trends observed on real LLM embeddings.
Audio--Visual Question Answering (AVQA) is a challenging multimodal task that requires jointly reasoning over audio, visual, and textual information in a given video to answer natural language questions. Inspired by recent advances in Video QA, many existing AVQA approaches primarily focus on visual information processing, leveraging pre-trained models to extract object-level and motion-level representations. However, in those methods, the audio input is primarily treated as complementary to video analysis, and the textual question information contributes minimally to audio--visual understanding, as it is typically integrated only in the final stages of reasoning. To address these limitations, we propose a novel Query-guided Spatial--Temporal--Frequency (QSTar) interaction method, which effectively incorporates question-guided clues and exploits the distinctive frequency-domain characteristics of audio signals, alongside spatial and temporal perception, to enhance audio--visual understanding. Furthermore, we introduce a Query Context Reasoning (QCR) block inspired by prompting, which guides the model to focus more precisely on semantically relevant audio and visual features. Extensive experiments conducted on several AVQA benchmarks demonstrate the effectiveness of our proposed method, achieving significant performance improvements over existing Audio QA, Visual QA, Video QA, and AVQA approaches. The code and pretrained models will be released after publication.
Recent advances in Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), enable scalable extraction of spatial information from unstructured text and offer new methodological opportunities for studying climate geography. This study develops a spatial framework to examine how cumulative climate risk relates to multidimensional human flourishing across U.S. counties. High-resolution climate hazard indicators are integrated with a Human Flourishing Geographic Index (HFGI), an index derived from classification of 2.6 billion geotagged tweets using fine-tuned open-source Large Language Models (LLMs). These indicators are aggregated to the US county-level and mapped to a structural equation model to infer overall climate risk and human flourishing dimensions, including expressed well-being, meaning and purpose, social connectedness, psychological distress, physical condition, economic stability, religiosity, character and virtue, and institutional trust. The results reveal spatially heterogeneous associations between greater cumulative climate risk and lower levels of expressed human flourishing, with coherent spatial patterns corresponding to recurrent exposure to heat, flooding, wind, drought, and wildfire hazards. The study demonstrates how Generative AI can be combined with latent construct modeling for geographical analysis and for spatial knowledge extraction.
Ransomware has become one of the most serious cybersecurity threats causing major financial losses and operational disruptions worldwide.Traditional detection methods such as static analysis, heuristic scanning and behavioral analysis often fall short when used alone. To address these limitations, this paper presents multimodal multi agent ransomware analysis framework designed for ransomware classification. Proposed multimodal multiagent architecture combines information from static, dynamic and network sources. Each data type is handled by specialized agent that uses auto encoder based feature extraction. These representations are then integrated through a fusion agent. After that fused representation are used by transformer based classifier. It identifies the specific ransomware family. The agents interact through an interagent feedback mechanism that iteratively refines feature representations by suppressing low confidence information. The framework was evaluated on large scale datasets containing thousands of ransomware and benign samples. Multiple experiments were conducted on ransomware dataset. It outperforms single modality and nonadaptive fusion baseline achieving improvement of up to 0.936 in Macro-F1 for family classification and reducing calibration error. Over 100 epochs, the agentic feedback loop displays a stable monotonic convergence leading to over +0.75 absolute improvement in terms of agent quality and a final composite score of around 0.88 without fine tuning of the language models. Zeroday ransomware detection remains family dependent on polymorphism and modality disruptions. Confidence aware abstention enables reliable real world deployment by favoring conservativeand trustworthy decisions over forced classification. The findings indicate that proposed approach provides a practical andeffective path toward improving real world ransomware defense systems.
Numerical techniques for solving partial differential equations (PDEs) are integral for many fields across science and engineering. Such techniques usually involve solving large, sparse linear systems, where preconditioning methods are critical. In recent years, neural methods, particularly graph neural networks (GNNs), have demonstrated their potential through accelerated convergence. Nonetheless, to extract connective structures, existing techniques aggregate discretized system matrices into graphs, and suffer from rank inflation and a suboptimal convergence rate. In this paper, we articulate NeuraLSP, a novel neural preconditioner combined with a novel loss metric that leverages the left singular subspace of the system matrix's near-nullspace vectors. By compressing spectral information into a fixed low-rank operator, our method exhibits both theoretical guarantees and empirical robustness to rank inflation, affording up to a 53% speedup. Besides the theoretical guarantees for our newly-formulated loss function, our comprehensive experimental results across diverse families of PDEs also substantiate the aforementioned theoretical advances.
Recent advances in large language models have enabled mental health dialogue systems, yet existing approaches remain predominantly reactive, lacking systematic user state modeling for proactive therapeutic exploration. We introduce PsyProbe, a dialogue system designed for the exploration phase of counseling that systematically tracks user psychological states through the PPPPPI framework (Presenting, Predisposing, Precipitating, Perpetuating, Protective, Impact) augmented with cognitive error detection. PsyProbe combines State Builder for extracting structured psychological profiles, Memory Construction for tracking information gaps, Strategy Planner for Motivational Interviewing behavioral codes, and Response Generator with Question Ideation and Critic/Revision modules to generate contextually appropriate, proactive questions. We evaluate PsyProbe with 27 participants in real-world Korean counseling scenarios, including automatic evaluation across ablation modes, user evaluation, and expert evaluation by a certified counselor. The full PsyProbe model consistently outperforms baseline and ablation modes in automatic evaluation. User evaluation demonstrates significantly increased engagement intention and improved naturalness compared to baseline. Expert evaluation shows that PsyProbe substantially improves core issue understanding and achieves question rates comparable to professional counselors, validating the effectiveness of systematic state modeling and proactive questioning for therapeutic exploration.