Abstract:Accurate 3D localization is essential for realizing advanced sensing functionalities in next-generation Wi-Fi communication systems. This study investigates the potential of multistatic localization in Wi-Fi networks through the deployment of multiple cooperative antenna arrays. The collaborative gain offered by these arrays is twofold: (i) intra-array coherent gain at the wavelength scale among antenna elements, and (ii) inter-array cooperative gain across arrays. To evaluate the feasibility and performance of this approach, we develop WiCAL (Wi-Fi Collaborative Antenna Localization), a system built upon commercial Wi-Fi infrastructure equipped with uniform rectangular arrays. These arrays are driven by multiplexing embedded radio frequency chains available in standard access points or user devices, thereby eliminating the need for sophisticated, costly, and power-hungry multi-transceiver modules typically required in multiple-input and multiple-output systems. To address phase offsets introduced by RF chain multiplexing, we propose a three-stage, fine-grained phase alignment scheme to synchronize signals across antenna elements within each array. A bidirectional spatial smoothing MUSIC algorithm is employed to estimate angles of arrival (AoAs) and mitigate performance degradation caused by correlated interference. To further exploit inter-array cooperative gain, we elaborate on the synchronization mechanism among distributed URAs, which enables direct position determination by bypassing intermediate angle estimation. Once synchronized, the distributed URAs effectively form a virtual large-scale array, significantly enhancing spatial resolution and localization accuracy.
Abstract:Dataset distillation aims to create a compact and highly representative synthetic dataset that preserves the knowledge of a larger real dataset. While existing methods primarily focus on optimizing visual representations, incorporating additional modalities and refining object-level information can significantly improve the quality of distilled datasets. In this work, we introduce two key enhancements to dataset distillation: caption-guided supervision and object-centric masking. To integrate textual information, we propose two strategies for leveraging caption features: the feature concatenation, where caption embeddings are fused with visual features at the classification stage, and caption matching, which introduces a caption-based alignment loss during training to ensure semantic coherence between real and synthetic data. Additionally, we apply segmentation masks to isolate target objects and remove background distractions, introducing two loss functions designed for object-centric learning: masked feature alignment loss and masked gradient matching loss. Comprehensive evaluations demonstrate that integrating caption-based guidance and object-centric masking enhances dataset distillation, leading to synthetic datasets that achieve superior performance on downstream tasks.
Abstract:In recent years, the rapid expansion of dataset sizes and the increasing complexity of deep learning models have significantly escalated the demand for computational resources, both for data storage and model training. Dataset distillation has emerged as a promising solution to address this challenge by generating a compact synthetic dataset that retains the essential information from a large real dataset. However, existing methods often suffer from limited performance and poor data quality, particularly in the video domain. In this paper, we focus on video dataset distillation by employing a video diffusion model to generate high-quality synthetic videos. To enhance representativeness, we introduce Video Spatio-Temporal U-Net (VST-UNet), a model designed to select a diverse and informative subset of videos that effectively captures the characteristics of the original dataset. To further optimize computational efficiency, we explore a training-free clustering algorithm, Temporal-Aware Cluster-based Distillation (TAC-DT), to select representative videos without requiring additional training overhead. We validate the effectiveness of our approach through extensive experiments on four benchmark datasets, demonstrating performance improvements of up to \(10.61\%\) over the state-of-the-art. Our method consistently outperforms existing approaches across all datasets, establishing a new benchmark for video dataset distillation.
Abstract:As deep learning models grow in complexity and the volume of training data increases, reducing storage and computational costs becomes increasingly important. Dataset distillation addresses this challenge by synthesizing a compact set of synthetic data that can effectively replace the original dataset in downstream classification tasks. While existing methods typically rely on mapping data from pixel space to the latent space of a generative model, we propose a novel stochastic approach that models the joint distribution of latent features. This allows our method to better capture spatial structures and produce diverse synthetic samples, which benefits model training. Specifically, we introduce a low-rank multivariate normal distribution parameterized by a lightweight network. This design maintains low computational complexity and is compatible with various matching networks used in dataset distillation. After distillation, synthetic images are generated by feeding the learned latent features into a pretrained generator. These synthetic images are then used to train classification models, and performance is evaluated on real test set. We validate our method on several benchmarks, including ImageNet subsets, CIFAR-10, and the MedMNIST histopathological dataset. Our approach achieves state-of-the-art cross architecture performance across a range of backbone architectures, demonstrating its generality and effectiveness.
Abstract:Backdoor attacks pose a significant threat to deep neural networks, as backdoored models would misclassify poisoned samples with specific triggers into target classes while maintaining normal performance on clean samples. Among these, multi-target backdoor attacks can simultaneously target multiple classes. However, existing multi-target backdoor attacks all follow the dirty-label paradigm, where poisoned samples are mislabeled, and most of them require an extremely high poisoning rate. This makes them easily detectable by manual inspection. In contrast, clean-label attacks are more stealthy, as they avoid modifying the labels of poisoned samples. However, they generally struggle to achieve stable and satisfactory attack performance and often fail to scale effectively to multi-target attacks. To address this issue, we propose the Feature-based Full-target Clean-label Backdoor Attacks (FFCBA) which consists of two paradigms: Feature-Spanning Backdoor Attacks (FSBA) and Feature-Migrating Backdoor Attacks (FMBA). FSBA leverages class-conditional autoencoders to generate noise triggers that align perturbed in-class samples with the original category's features, ensuring the effectiveness, intra-class consistency, inter-class specificity and natural-feature correlation of triggers. While FSBA supports swift and efficient attacks, its cross-model attack capability is relatively weak. FMBA employs a two-stage class-conditional autoencoder training process that alternates between using out-of-class samples and in-class samples. This allows FMBA to generate triggers with strong target-class features, making it highly effective for cross-model attacks. We conduct experiments on multiple datasets and models, the results show that FFCBA achieves outstanding attack performance and maintains desirable robustness against the state-of-the-art backdoor defenses.
Abstract:A primary challenge in ITE estimation is sample selection bias. Traditional approaches utilize treatment regularization techniques such as the Integral Probability Metrics (IPM), re-weighting, and propensity score modeling to mitigate this bias. However, these regularizations may introduce undesirable information loss and limit the performance of the model. Furthermore, treatment effects vary across different external contexts, and the existing methods are insufficient in fully interacting with and utilizing these contextual features. To address these issues, we propose a Context-Aware uplift model based on the Two-Stage training approach (TSCAN), comprising CAN-U and CAN-D sub-models. In the first stage, we train an uplift model, called CAN-U, which includes the treatment regularizations of IPM and propensity score prediction, to generate a complete dataset with counterfactual uplift labels. In the second stage, we train a model named CAN-D, which utilizes an isotonic output layer to directly model uplift effects, thereby eliminating the reliance on the regularization components. CAN-D adaptively corrects the errors estimated by CAN-U through reinforcing the factual samples, while avoiding the negative impacts associated with the aforementioned regularizations. Additionally, we introduce a Context-Aware Attention Layer throughout the two-stage process to manage the interactions between treatment, merchant, and contextual features, thereby modeling the varying treatment effect in different contexts. We conduct extensive experiments on two real-world datasets to validate the effectiveness of TSCAN. Ultimately, the deployment of our model for real-world merchant diagnosis on one of China's largest online food ordering platforms validates its practical utility and impact.
Abstract:Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
Abstract:Improving the efficiency of inference in Large Language Models (LLMs) is a critical area of research. Post-training Quantization (PTQ) is a popular technique, but it often faces challenges at low-bit levels, particularly in downstream tasks. Quantization-aware Training (QAT) can alleviate this problem, but it requires significantly more computational resources. To tackle this, we introduced Weight-Decomposed Low-Rank Quantization-Aware Training (DL-QAT), which merges the advantages of QAT while training only less than 1% of the total parameters. Specifically, we introduce a group-specific quantization magnitude to adjust the overall scale of each quantization group. Within each quantization group, we use LoRA matrices to update the weight size and direction in the quantization space. We validated the effectiveness of our method on the LLaMA and LLaMA2 model families. The results show significant improvements over our baseline method across different quantization granularities. For instance, for LLaMA-7B, our approach outperforms the previous state-of-the-art method by 4.2% in MMLU on 3-bit LLaMA-7B model. Additionally, our quantization results on pre-trained models also surpass previous QAT methods, demonstrating the superior performance and efficiency of our approach.
Abstract:Photoplethysmography (PPG) Sensors, widely deployed in smartwatches, offer a simple and non-invasive authentication approach for daily use. However, PPG authentication faces reliability issues due to motion artifacts from physical activity and physiological variability over time. To address these challenges, we propose MTL-RAPID, an efficient and reliable PPG authentication model, that employs a multitask joint training strategy, simultaneously assessing signal quality and verifying user identity. The joint optimization of these two tasks in MTL-RAPID results in a structure that outperforms models trained on individual tasks separately, achieving stronger performance with fewer parameters. In our comprehensive user studies regarding motion artifacts (N = 30), time variations (N = 32), and user preferences (N = 16), MTL-RAPID achieves a best AUC of 99.2\% and an EER of 3.5\%, outperforming existing baselines. We opensource our PPG authentication dataset along with the MTL-RAPID model to facilitate future research on GitHub.
Abstract:This work introduces a novel decentralized framework to interpret federated learning (FL) and, consequently, correct the biases introduced by arbitrary client participation and data heterogeneity, which are two typical traits in practical FL. Specifically, we first reformulate the core processes of FedAvg - client participation, local updating, and model aggregation - as stochastic matrix multiplications. This reformulation allows us to interpret FedAvg as a decentralized algorithm. Leveraging the decentralized optimization framework, we are able to provide a concise analysis to quantify the impact of arbitrary client participation and data heterogeneity on FedAvg's convergence point. This insight motivates the development of Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS), a novel algorithm inspired by the decentralized algorithm that eliminates these biases and achieves exact convergence without requiring the bounded heterogeneity assumption. Furthermore, we theoretically prove that FOCUS exhibits linear convergence (exponential decay) for both strongly convex and non-convex functions satisfying the Polyak-Lojasiewicz condition, regardless of the arbitrary nature of client participation.