Abstract:Vision-Language Action (VLA) models have shown remarkable progress in robotic manipulation by leveraging the powerful perception abilities of Vision-Language Models (VLMs) to understand environments and directly output actions. However, by default, VLA models may overly attend to image tokens in the task-irrelevant region, which we describe as 'distracting tokens'. This behavior can disturb the model from the generation of the desired action tokens in each step, affecting the success rate of tasks. In this paper, we introduce a simple yet effective plug-and-play Distracting Token Pruning (DTP) framework, which dynamically detects and prunes these distracting image tokens. By correcting the model's visual attention patterns, we aim to improve the task success rate, as well as exploring the performance upper boundaries of the model without altering its original architecture or adding additional inputs. Experiments on the SIMPLER Benchmark (Li et al., 2024) show that our method consistently achieving relative improvements in task success rates across different types of novel VLA models, demonstrating generalizability to transformer-based VLAs. Further analysis reveals a negative correlation between the task success rate and the amount of attentions in the task-irrelevant region for all models tested, highlighting a common phenomenon of VLA models that could guide future research. We also publish our code at: https://anonymous.4open.science/r/CBD3.




Abstract:Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
Abstract:Legal relations form a highly consequential analytical framework of civil law system, serving as a crucial foundation for resolving disputes and realizing values of the rule of law in judicial practice. However, legal relations in Chinese civil cases remain underexplored in the field of legal artificial intelligence (legal AI), largely due to the absence of comprehensive schemas. In this work, we firstly introduce a comprehensive schema, which contains a hierarchical taxonomy and definitions of arguments, for AI systems to capture legal relations in Chinese civil cases. Based on this schema, we then formulate legal relation extraction task and present LexRel, an expert-annotated benchmark for legal relation extraction in Chinese civil law. We use LexRel to evaluate state-of-the-art large language models (LLMs) on legal relation extractions, showing that current LLMs exhibit significant limitations in accurately identifying civil legal relations. Furthermore, we demonstrate that incorporating legal relations information leads to consistent performance gains on other downstream legal AI tasks.




Abstract:Vision-and-Language Navigation (VLN) agents have made remarkable progress, but their robustness remains insufficiently studied. Existing adversarial evaluations often rely on perturbations that manifest as unusual textures rarely encountered in everyday indoor environments. Errors under such contrived conditions have limited practical relevance, as real-world agents are unlikely to encounter such artificial patterns. In this work, we focus on indoor lighting, an intrinsic yet largely overlooked scene attribute that strongly influences navigation. We propose Indoor Lighting-based Adversarial Attack (ILA), a black-box framework that manipulates global illumination to disrupt VLN agents. Motivated by typical household lighting usage, we design two attack modes: Static Indoor Lighting-based Attack (SILA), where the lighting intensity remains constant throughout an episode, and Dynamic Indoor Lighting-based Attack (DILA), where lights are switched on or off at critical moments to induce abrupt illumination changes. We evaluate ILA on two state-of-the-art VLN models across three navigation tasks. Results show that ILA significantly increases failure rates while reducing trajectory efficiency, revealing previously unrecognized vulnerabilities of VLN agents to realistic indoor lighting variations.
Abstract:Precise needle alignment is essential for percutaneous needle insertion in robotic ultrasound-guided procedures. However, inherent challenges such as speckle noise, needle-like artifacts, and low image resolution make robust needle detection difficult, particularly when visibility is reduced or lost. In this paper, we propose a method to restore needle alignment when the ultrasound imaging plane and the needle insertion plane are misaligned. Unlike many existing approaches that rely heavily on needle visibility in ultrasound images, our method uses a more robust feature by periodically vibrating the needle using a mechanical system. Specifically, we propose a vibration-based energy metric that remains effective even when the needle is fully out of plane. Using this metric, we develop a control strategy to reposition the ultrasound probe in response to misalignments between the imaging plane and the needle insertion plane in both translation and rotation. Experiments conducted on ex-vivo porcine tissue samples using a dual-arm robotic ultrasound-guided needle insertion system demonstrate the effectiveness of the proposed approach. The experimental results show the translational error of 0.41$\pm$0.27 mm and the rotational error of 0.51$\pm$0.19 degrees.




Abstract:Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.
Abstract:Neighborhood-aware tokenized graph Transformers have recently shown great potential for node classification tasks. Despite their effectiveness, our in-depth analysis of neighborhood tokens reveals two critical limitations in the existing paradigm. First, current neighborhood token generation methods fail to adequately capture attribute correlations within a neighborhood. Second, the conventional self-attention mechanism suffers from attention diversion when processing neighborhood tokens, where high-hop neighborhoods receive disproportionate focus, severely disrupting information interactions between the target node and its neighborhood tokens. To address these challenges, we propose DAM-GT, Dual positional encoding-based Attention Masking graph Transformer. DAM-GT introduces a novel dual positional encoding scheme that incorporates attribute-aware encoding via an attribute clustering strategy, effectively preserving node correlations in both topological and attribute spaces. In addition, DAM-GT formulates a new attention mechanism with a simple yet effective masking strategy to guide interactions between target nodes and their neighborhood tokens, overcoming the issue of attention diversion. Extensive experiments on various graphs with different homophily levels as well as different scales demonstrate that DAM-GT consistently outperforms state-of-the-art methods in node classification tasks.
Abstract:Underwater object detection is critical for oceanic research and industrial safety inspections. However, the complex optical environment and the limited resources of underwater equipment pose significant challenges to achieving high accuracy and low power consumption. To address these issues, we propose Spiking Underwater YOLO (SU-YOLO), a Spiking Neural Network (SNN) model. Leveraging the lightweight and energy-efficient properties of SNNs, SU-YOLO incorporates a novel spike-based underwater image denoising method based solely on integer addition, which enhances the quality of feature maps with minimal computational overhead. In addition, we introduce Separated Batch Normalization (SeBN), a technique that normalizes feature maps independently across multiple time steps and is optimized for integration with residual structures to capture the temporal dynamics of SNNs more effectively. The redesigned spiking residual blocks integrate the Cross Stage Partial Network (CSPNet) with the YOLO architecture to mitigate spike degradation and enhance the model's feature extraction capabilities. Experimental results on URPC2019 underwater dataset demonstrate that SU-YOLO achieves mAP of 78.8% with 6.97M parameters and an energy consumption of 2.98 mJ, surpassing mainstream SNN models in both detection accuracy and computational efficiency. These results underscore the potential of SNNs for engineering applications. The code is available in https://github.com/lwxfight/snn-underwater.




Abstract:Fatigue life characterizes the duration a material can function before failure under specific environmental conditions, and is traditionally assessed using stress-life (S-N) curves. While machine learning and deep learning offer promising results for fatigue life prediction, they face the overfitting challenge because of the small size of fatigue experimental data in specific materials. To address this challenge, we propose, DeepOFormer, by formulating S-N curve prediction as an operator learning problem. DeepOFormer improves the deep operator learning framework with a transformer-based encoder and a mean L2 relative error loss function. We also consider Stussi, Weibull, and Pascual and Meeker (PM) features as domain-informed features. These features are motivated by empirical fatigue models. To evaluate the performance of our DeepOFormer, we compare it with different deep learning models and XGBoost on a dataset with 54 S-N curves of aluminum alloys. With seven different aluminum alloys selected for testing, our DeepOFormer achieves an R2 of 0.9515, a mean absolute error of 0.2080, and a mean relative error of 0.5077, significantly outperforming state-of-the-art deep/machine learning methods including DeepONet, TabTransformer, and XGBoost, etc. The results highlight that our Deep0Former integrating with domain-informed features substantially improves prediction accuracy and generalization capabilities for fatigue life prediction in aluminum alloys.
Abstract:The weighted low-rank approximation problem is a fundamental numerical linear algebra problem and has many applications in machine learning. Given a $n \times n$ weight matrix $W$ and a $n \times n$ matrix $A$, the goal is to find two low-rank matrices $U, V \in \mathbb{R}^{n \times k}$ such that the cost of $\| W \circ (U V^\top - A) \|_F^2$ is minimized. Previous work has to pay $\Omega(n^2)$ time when matrices $A$ and $W$ are dense, e.g., having $\Omega(n^2)$ non-zero entries. In this work, we show that there is a certain regime, even if $A$ and $W$ are dense, we can still hope to solve the weighted low-rank approximation problem in almost linear $n^{1+o(1)}$ time.