Topic:Panoptic Segmentation
What is Panoptic Segmentation? Panoptic segmentation is a computer vision task that combines semantic segmentation and instance segmentation to provide a comprehensive understanding of the scene. The goal of panoptic segmentation is to segment the image into semantically meaningful parts or regions, while also detecting and distinguishing individual instances of objects within those regions. In a given image, every pixel is assigned a semantic label, and pixels belonging to things classes (countable objects with instances, like cars and people) are assigned unique instance IDs.
Papers and Code
Apr 12, 2024
Abstract:In recent decades, the vision community has witnessed remarkable progress in visual recognition, partially owing to advancements in dataset benchmarks. Notably, the established COCO benchmark has propelled the development of modern detection and segmentation systems. However, the COCO segmentation benchmark has seen comparatively slow improvement over the last decade. Originally equipped with coarse polygon annotations for thing instances, it gradually incorporated coarse superpixel annotations for stuff regions, which were subsequently heuristically amalgamated to yield panoptic segmentation annotations. These annotations, executed by different groups of raters, have resulted not only in coarse segmentation masks but also in inconsistencies between segmentation types. In this study, we undertake a comprehensive reevaluation of the COCO segmentation annotations. By enhancing the annotation quality and expanding the dataset to encompass 383K images with more than 5.18M panoptic masks, we introduce COCONut, the COCO Next Universal segmenTation dataset. COCONut harmonizes segmentation annotations across semantic, instance, and panoptic segmentation with meticulously crafted high-quality masks, and establishes a robust benchmark for all segmentation tasks. To our knowledge, COCONut stands as the inaugural large-scale universal segmentation dataset, verified by human raters. We anticipate that the release of COCONut will significantly contribute to the community's ability to assess the progress of novel neural networks.
Via

Jul 07, 2024
Abstract:Recently, diffusion models have increasingly demonstrated their capabilities in vision understanding. By leveraging prompt-based learning to construct sentences, these models have shown proficiency in classification and visual grounding tasks. However, existing approaches primarily showcase their ability to perform sentence-level localization, leaving the potential for leveraging contextual information for phrase-level understanding largely unexplored. In this paper, we utilize Panoptic Narrative Grounding (PNG) as a proxy task to investigate this capability further. PNG aims to segment object instances mentioned by multiple noun phrases within a given narrative text. Specifically, we introduce the DiffPNG framework, a straightforward yet effective approach that fully capitalizes on the diffusion's architecture for segmentation by decomposing the process into a sequence of localization, segmentation, and refinement steps. The framework initially identifies anchor points using cross-attention mechanisms and subsequently performs segmentation with self-attention to achieve zero-shot PNG. Moreover, we introduce a refinement module based on SAM to enhance the quality of the segmentation masks. Our extensive experiments on the PNG dataset demonstrate that DiffPNG achieves strong performance in the zero-shot PNG task setting, conclusively proving the diffusion model's capability for context-aware, phrase-level understanding. Source code is available at \url{https://github.com/nini0919/DiffPNG}.
* Accepted by ECCV2024
Via

Aug 03, 2024
Abstract:In pathology, accurate and efficient analysis of Hematoxylin and Eosin (H\&E) slides is crucial for timely and effective cancer diagnosis. Although many deep learning solutions for nuclei instance segmentation and classification exist in the literature, they often entail high computational costs and resource requirements, thus limiting their practical usage in medical applications. To address this issue, we introduce a novel convolutional neural network, NuLite, a U-Net-like architecture designed explicitly on Fast-ViT, a state-of-the-art (SOTA) lightweight CNN. We obtained three versions of our model, NuLite-S, NuLite-M, and NuLite-H, trained on the PanNuke dataset. The experimental results prove that our models equal CellViT (SOTA) in terms of panoptic quality and detection. However, our lightest model, NuLite-S, is 40 times smaller in terms of parameters and about 8 times smaller in terms of GFlops, while our heaviest model is 17 times smaller in terms of parameters and about 7 times smaller in terms of GFlops. Moreover, our model is up to about 8 times faster than CellViT. Lastly, to prove the effectiveness of our solution, we provide a robust comparison of external datasets, namely CoNseP, MoNuSeg, and GlySAC. Our model is publicly available at https://github.com/CosmoIknosLab/NuLite
Via

Feb 23, 2024
Abstract:Precise situational awareness is required for the safe decision-making of assisted and automated driving (AAD) functions. Panoptic segmentation is a promising perception technique to identify and categorise objects, impending hazards, and driveable space at a pixel level. While segmentation quality is generally associated with the quality of the camera data, a comprehensive understanding and modelling of this relationship are paramount for AAD system designers. Motivated by such a need, this work proposes a unifying pipeline to assess the robustness of panoptic segmentation models for AAD, correlating it with traditional image quality. The first step of the proposed pipeline involves generating degraded camera data that reflects real-world noise factors. To this end, 19 noise factors have been identified and implemented with 3 severity levels. Of these factors, this work proposes novel models for unfavourable light and snow. After applying the degradation models, three state-of-the-art CNN- and vision transformers (ViT)-based panoptic segmentation networks are used to analyse their robustness. The variations of the segmentation performance are then correlated to 8 selected image quality metrics. This research reveals that: 1) certain specific noise factors produce the highest impact on panoptic segmentation, i.e. droplets on lens and Gaussian noise; 2) the ViT-based panoptic segmentation backbones show better robustness to the considered noise factors; 3) some image quality metrics (i.e. LPIPS and CW-SSIM) correlate strongly with panoptic segmentation performance and therefore they can be used as predictive metrics for network performance.
Via

Apr 15, 2024
Abstract:Recent advancements in image segmentation have focused on enhancing the efficiency of the models to meet the demands of real-time applications, especially on edge devices. However, existing research has primarily concentrated on single-task settings, especially on semantic segmentation, leading to redundant efforts and specialized architectures for different tasks. To address this limitation, we propose a novel architecture for efficient multi-task image segmentation, capable of handling various segmentation tasks without sacrificing efficiency or accuracy. We introduce BiSeNetFormer, that leverages the efficiency of two-stream semantic segmentation architectures and it extends them into a mask classification framework. Our approach maintains the efficient spatial and context paths to capture detailed and semantic information, respectively, while leveraging an efficient transformed-based segmentation head that computes the binary masks and class probabilities. By seamlessly supporting multiple tasks, namely semantic and panoptic segmentation, BiSeNetFormer offers a versatile solution for multi-task segmentation. We evaluate our approach on popular datasets, Cityscapes and ADE20K, demonstrating impressive inference speeds while maintaining competitive accuracy compared to state-of-the-art architectures. Our results indicate that BiSeNetFormer represents a significant advancement towards fast, efficient, and multi-task segmentation networks, bridging the gap between model efficiency and task adaptability.
* Accepted to ECV workshop at CVPR2024
Via

Mar 14, 2024
Abstract:In this paper, we introduce an open-vocabulary panoptic segmentation model that effectively unifies the strengths of the Segment Anything Model (SAM) with the vision-language CLIP model in an end-to-end framework. While SAM excels in generating spatially-aware masks, it's decoder falls short in recognizing object class information and tends to oversegment without additional guidance. Existing approaches address this limitation by using multi-stage techniques and employing separate models to generate class-aware prompts, such as bounding boxes or segmentation masks. Our proposed method, PosSAM is an end-to-end model which leverages SAM's spatially rich features to produce instance-aware masks and harnesses CLIP's semantically discriminative features for effective instance classification. Specifically, we address the limitations of SAM and propose a novel Local Discriminative Pooling (LDP) module leveraging class-agnostic SAM and class-aware CLIP features for unbiased open-vocabulary classification. Furthermore, we introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image. We conducted extensive experiments to demonstrate our methods strong generalization properties across multiple datasets, achieving state-of-the-art performance with substantial improvements over SOTA open-vocabulary panoptic segmentation methods. In both COCO to ADE20K and ADE20K to COCO settings, PosSAM outperforms the previous state-of-the-art methods by a large margin, 2.4 PQ and 4.6 PQ, respectively. Project Website: https://vibashan.github.io/possam-web/.
Via

Mar 29, 2024
Abstract:This paper details an innovative methodology to integrate image data into traditional econometric models. Motivated by forecasting sales prices for residential real estate, we harness the power of deep learning to add "information" contained in images as covariates. Specifically, images of homes were categorized and encoded using an ensemble of image classifiers (ResNet-50, VGG16, MobileNet, and Inception V3). Unique features presented within each image were further encoded through panoptic segmentation. Forecasts from a neural network trained on the encoded data results in improved out-of-sample predictive power. We also combine these image-based forecasts with standard hedonic real estate property and location characteristics, resulting in a unified dataset. We show that image-based forecasts increase the accuracy of hedonic forecasts when encoded features are regarded as additional covariates. We also attempt to "explain" which covariates the image-based forecasts are most highly correlated with. The study exemplifies the benefits of interdisciplinary methodologies, merging machine learning and econometrics to harness untapped data sources for more accurate forecasting.
Via

Mar 21, 2024
Abstract:PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges. To overcome the limitation of the LMM being limited to textual output, PSALM incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks. This schema includes images, task instructions, conditional prompts, and mask tokens, which enable the model to generate and classify segmentation masks effectively. The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization. PSALM achieves superior results on several benchmarks, such as RefCOCO/RefCOCO+/RefCOCOg, COCO Panoptic Segmentation, and COCO-Interactive, and further exhibits zero-shot capabilities on unseen tasks, such as open-vocabulary segmentation, generalized referring expression segmentation and video object segmentation, making a significant step towards a GPT moment in computer vision. Through extensive experiments, PSALM demonstrates its potential to transform the domain of image segmentation, leveraging the robust visual understanding capabilities of LMMs as seen in natural language processing. Code and models are available at https://github.com/zamling/PSALM.
Via

Mar 19, 2024
Abstract:We propose $\texttt{SAL}$ ($\texttt{S}$egment $\texttt{A}$nything in $\texttt{L}$idar) method consisting of a text-promptable zero-shot model for segmenting and classifying any object in Lidar, and a pseudo-labeling engine that facilitates model training without manual supervision. While the established paradigm for $\textit{Lidar Panoptic Segmentation}$ (LPS) relies on manual supervision for a handful of object classes defined a priori, we utilize 2D vision foundation models to generate 3D supervision "for free". Our pseudo-labels consist of instance masks and corresponding CLIP tokens, which we lift to Lidar using calibrated multi-modal data. By training our model on these labels, we distill the 2D foundation models into our Lidar $\texttt{SAL}$ model. Even without manual labels, our model achieves $91\%$ in terms of class-agnostic segmentation and $44\%$ in terms of zero-shot LPS of the fully supervised state-of-the-art. Furthermore, we outperform several baselines that do not distill but only lift image features to 3D. More importantly, we demonstrate that $\texttt{SAL}$ supports arbitrary class prompts, can be easily extended to new datasets, and shows significant potential to improve with increasing amounts of self-labeled data.
Via

Jan 18, 2024
Abstract:Panoptic and instance segmentation networks are often trained with specialized object detection modules, complex loss functions, and ad-hoc post-processing steps to handle the permutation-invariance of the instance masks. This work builds upon Stable Diffusion and proposes a latent diffusion approach for panoptic segmentation, resulting in a simple architecture which omits these complexities. Our training process consists of two steps: (1) training a shallow autoencoder to project the segmentation masks to latent space; (2) training a diffusion model to allow image-conditioned sampling in latent space. The use of a generative model unlocks the exploration of mask completion or inpainting, which has applications in interactive segmentation. The experimental validation yields promising results for both panoptic segmentation and mask inpainting. While not setting a new state-of-the-art, our model's simplicity, generality, and mask completion capability are desirable properties.
Via
