Visual Deformation Measurement (VDM) aims to recover dense deformation fields by tracking surface motion from camera observations. Traditional image-based methods rely on minimal inter-frame motion to constrain the correspondence search space, which limits their applicability to highly dynamic scenes or necessitates high-speed cameras at the cost of prohibitive storage and computational overhead. We propose an event-frame fusion framework that exploits events for temporally dense motion cues and frames for spatially dense precise estimation. Revisiting the solid elastic modeling prior, we propose an Affine Invariant Simplicial (AIS) framework. It partitions the deformation field into linearized sub-regions with low-parametric representation, effectively mitigating motion ambiguities arising from sparse and noisy events. To speed up parameter searching and reduce error accumulation, a neighborhood-greedy optimization strategy is introduced, enabling well-converged sub-regions to guide their poorly-converged neighbors, effectively suppress local error accumulation in long-term dense tracking. To evaluate the proposed method, a benchmark dataset with temporally aligned event streams and frames is established, encompassing over 120 sequences spanning diverse deformation scenarios. Experimental results show that our method outperforms the state-of-the-art baseline by 1.6% in survival rate. Remarkably, it achieves this using only 18.9% of the data storage and processing resources of high-speed video methods.
Vision Language Models (VLMs) are designed to extend Large Language Models (LLMs) with visual capabilities, yet in this work we observe a surprising phenomenon: VLMs can outperform their underlying LLMs on purely text-only tasks, particularly in long-context information retrieval. To investigate this effect, we build a controlled synthetic retrieval task and find that a transformer trained only on text achieves perfect in-distribution accuracy but fails to generalize out of distribution, while subsequent training on an image-tokenized version of the same task nearly doubles text-only OOD performance. Mechanistic interpretability reveals that visual training changes the model's internal binding strategy: text-only training encourages positional shortcuts, whereas image-based training disrupts them through spatial translation invariance, forcing the model to adopt a more robust symbolic binding mechanism that persists even after text-only examples are reintroduced. We further characterize how binding strategies vary across training regimes, visual encoders, and initializations, and show that analogous shifts occur during pretrained LLM-to-VLM transitions. Our findings suggest that cross-modal training can enhance reasoning and generalization even for tasks grounded in a single modality.
Finding optimal measurement operators is crucial for the performance of quantum reservoir computers (QRCs), since they employ a fixed quantum feature map. We formulate the training of both stateless (quantum extreme learning machines, QELMs) and stateful (memory dependent) QRCs in the framework of kernel ridge regression. This approach renders an optimal measurement operator that minimizes prediction error for a given reservoir and training dataset. For large qubit numbers, this method is more efficient than the conventional training of QRCs. We discuss efficiency and practical implementation strategies, including Pauli basis decomposition and operator diagonalization, to adapt the optimal observable to hardware constraints. Numerical experiments on image classification and time series prediction tasks demonstrate the effectiveness of this approach, which can also be applied to other quantum ML models.
Recent advances in 3D Large Multimodal Models (LMMs) built on Large Language Models (LLMs) have established the alignment of 3D visual features with LLM representations as the dominant paradigm. However, the inherited Rotary Position Embedding (RoPE) introduces limitations for multimodal processing. Specifically, applying 1D temporal positional indices disrupts the continuity of visual features along the column dimension, resulting in spatial locality loss. Moreover, RoPE follows the prior that temporally closer image tokens are more causally related, leading to long-term decay in attention allocation and causing the model to progressively neglect earlier visual tokens as the sequence length increases. To address these issues, we propose C^2RoPE, an improved RoPE that explicitly models local spatial Continuity and spatial Causal relationships for visual processing. C^2RoPE introduces a spatio-temporal continuous positional embedding mechanism for visual tokens. It first integrates 1D temporal positions with Cartesian-based spatial coordinates to construct a triplet hybrid positional index, and then employs a frequency allocation strategy to encode spatio-temporal positional information across the three index components. Additionally, we introduce Chebyshev Causal Masking, which determines causal dependencies by computing the Chebyshev distance of image tokens in 2D space. Evaluation results across various benchmarks, including 3D scene reasoning and 3D visual question answering, demonstrate C^2RoPE's effectiveness. The code is be available at https://github.com/ErikZ719/C2RoPE.
Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2025, an unsupervised multimodal medical image registration method based on Multilevel Correlation Pyramidal Optimization (MCPO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the displacement field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. Our method focuses on the ReMIND2Reg task in Learn2Reg 2025. Based on the results, our method achieved the first place in the validation phase and test phase of ReMIND2Reg. The MCPO is also validated on the Resect dataset, achieving an average TRE of 1.798 mm. This demonstrates the broad applicability of our method in preoperative-to-intraoperative image registration. The code is available at https://github.com/wjiazheng/MCPO.
Accurate polyp segmentation in colonoscopy is essential for cancer prevention but remains challenging due to: (1) high morphological variability (from flat to protruding lesions), (2) strong visual similarity to normal structures such as folds and vessels, and (3) the need for robust multi-scale detection. Existing deep learning approaches suffer from unidirectional processing, weak multi-scale fusion, and the absence of anatomical constraints, often leading to false positives (over-segmentation of normal structures) and false negatives (missed subtle flat lesions). We propose GRAFNet, a biologically inspired architecture that emulates the hierarchical organisation of the human visual system. GRAFNet integrates three key modules: (1) a Guided Asymmetric Attention Module (GAAM) that mimics orientation-tuned cortical neurones to emphasise polyp boundaries, (2) a MultiScale Retinal Module (MSRM) that replicates retinal ganglion cell pathways for parallel multi-feature analysis, and (3) a Guided Cortical Attention Feedback Module (GCAFM) that applies predictive coding for iterative refinement. These are unified in a Polyp Encoder-Decoder Module (PEDM) that enforces spatial-semantic consistency via resolution-adaptive feedback. Extensive experiments on five public benchmarks (Kvasir-SEG, CVC-300, CVC-ColonDB, CVC-Clinic, and PolypGen) demonstrate consistent state-of-the-art performance, with 3-8% Dice improvements and 10-20% higher generalisation over leading methods, while offering interpretable decision pathways. This work establishes a paradigm in which neural computation principles bridge the gap between AI accuracy and clinically trustworthy reasoning. Code is available at https://github.com/afofanah/GRAFNet.
Removing fence occlusions from single images is a challenging task that degrades visual quality and limits downstream computer vision applications. Existing methods often fail on static scenes or require motion cues from multiple frames. To overcome these limitations, we introduce the first framework to leverage dual-pixel (DP) sensors for this problem. We propose Freq-DP Net, a novel dual-branch network that fuses two complementary priors: a geometric prior from defocus disparity, modeled using an explicit cost volume, and a structural prior of the fence's global pattern, learned via Fast Fourier Convolution (FFC). An attention mechanism intelligently merges these cues for highly accurate fence segmentation. To validate our approach, we build and release a diverse benchmark with different fence varieties. Experiments demonstrate that our method significantly outperforms strong general-purpose baselines, establishing a new state-of-the-art for single-image, DP-based fence removal.
Multimodal reasoning for ultra-high-resolution (UHR) remote sensing (RS) is usually bottlenecked by visual evidence acquisition: the model necessitates localizing tiny task-relevant regions in massive pixel spaces. While Agentic Reinforcement Learning with Verifiable Rewards (RLVR) using zoom-in tools offers a path forward, we find that standard reinforcement learning struggles to navigate these vast visual spaces without structured domain priors. In this paper, we investigate the interplay between post-training paradigms: comparing Cold-start Supervised Fine-Tuning (SFT), RLVR, and Agentic RLVR on the UHR RS benchmark.Our controlled studies yield a counter-intuitive finding: high-quality Earth-science text-only QA is a primary driver of UHR visual reasoning gains. Despite lacking images, domain-specific text injects the concepts, mechanistic explanations, and decision rules necessary to guide visual evidence retrieval.Based on this, we propose a staged knowledge injection recipe: (1) cold-starting with scalable, knowledge-graph-verified Earth-science text QA to instill reasoning structures;and (2) "pre-warming" on the same hard UHR image-text examples during SFT to stabilize and amplify subsequent tool-based RL. This approach achieves a 60.40% Pass@1 on XLRS-Bench, significantly outperforming larger general purpose models (e.g., GPT-5.2, Gemini 3.0 Pro, Intern-S1) and establishing a new state-of-the-art.
3D Gaussian Splatting (3DGS) has emerged as a powerful approach for novel view synthesis. However, the number of Gaussian primitives often grows substantially during training as finer scene details are reconstructed, leading to increased memory and storage costs. Recent coarse-to-fine strategies regulate Gaussian growth by modulating the frequency content of the ground-truth images. In particular, AutoOpti3DGS employs the learnable Discrete Wavelet Transform (DWT) to enable data-adaptive frequency modulation. Nevertheless, its modulation depth is limited by the 1-level DWT, and jointly optimizing wavelet regularization with 3D reconstruction introduces gradient competition that promotes excessive Gaussian densification. In this paper, we propose a multi-level DWT-based frequency modulation framework for 3DGS. By recursively decomposing the low-frequency subband, we construct a deeper curriculum that provides progressively coarser supervision during early training, consistently reducing Gaussian counts. Furthermore, we show that the modulation can be performed using only a single scaling parameter, rather than learning the full 2-tap high-pass filter. Experimental results on standard benchmarks demonstrate that our method further reduces Gaussian counts while maintaining competitive rendering quality.
We present UniRef-Image-Edit, a high-performance multi-modal generation system that unifies single-image editing and multi-image composition within a single framework. Existing diffusion-based editing methods often struggle to maintain consistency across multiple conditions due to limited interaction between reference inputs. To address this, we introduce Sequence-Extended Latent Fusion (SELF), a unified input representation that dynamically serializes multiple reference images into a coherent latent sequence. During a dedicated training stage, all reference images are jointly constrained to fit within a fixed-length sequence under a global pixel-budget constraint. Building upon SELF, we propose a two-stage training framework comprising supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we jointly train on single-image editing and multi-image composition tasks to establish a robust generative prior. We adopt a progressive sequence length training strategy, in which all input images are initially resized to a total pixel budget of $1024^2$, and are then gradually increased to $1536^2$ and $2048^2$ to improve visual fidelity and cross-reference consistency. This gradual relaxation of compression enables the model to incrementally capture finer visual details while maintaining stable alignment across references. For the RL stage, we introduce Multi-Source GRPO (MSGRPO), to our knowledge the first reinforcement learning framework tailored for multi-reference image generation. MSGRPO optimizes the model to reconcile conflicting visual constraints, significantly enhancing compositional consistency. We will open-source the code, models, training data, and reward data for community research purposes.