Alert button
Picture for Yang Cao

Yang Cao

Alert button

GhostVec: A New Threat to Speaker Privacy of End-to-End Speech Recognition System

Nov 17, 2023
Xiaojiao Chen, Sheng Li, Jiyi Li, Hao Huang, Yang Cao, Liang He

Speaker adaptation systems face privacy concerns, for such systems are trained on private datasets and often overfitting. This paper demonstrates that an attacker can extract speaker information by querying speaker-adapted speech recognition (ASR) systems. We focus on the speaker information of a transformer-based ASR and propose GhostVec, a simple and efficient attack method to extract the speaker information from an encoder-decoder-based ASR system without any external speaker verification system or natural human voice as a reference. To make our results quantitative, we pre-process GhostVec using singular value decomposition (SVD) and synthesize it into waveform. Experiment results show that the synthesized audio of GhostVec reaches 10.83\% EER and 0.47 minDCF with target speakers, which suggests the effectiveness of the proposed method. We hope the preliminary discovery in this study to catalyze future speech recognition research on privacy-preserving topics.

* accepted in ACM Multimedia Asia 2023 
Viaarxiv icon

Reprogramming Self-supervised Learning-based Speech Representations for Speaker Anonymization

Nov 17, 2023
Xiaojiao Chen, Sheng Li, Jiyi Li, Hao Huang, Yang Cao, Liang He

Current speaker anonymization methods, especially with self-supervised learning (SSL) models, require massive computational resources when hiding speaker identity. This paper proposes an effective and parameter-efficient speaker anonymization method based on recent End-to-End model reprogramming technology. To improve the anonymization performance, we first extract speaker representation from large SSL models as the speaker identifies. To hide the speaker's identity, we reprogram the speaker representation by adapting the speaker to a pseudo domain. Extensive experiments are carried out on the VoicePrivacy Challenge (VPC) 2022 datasets to demonstrate the effectiveness of our proposed parameter-efficient learning anonymization methods. Additionally, while achieving comparable performance with the VPC 2022 strong baseline 1.b, our approach consumes less computational resources during anonymization.

* accepted in ACM Multimedia Asia2023 
Viaarxiv icon

Integrated Distributed Semantic Communication and Over-the-air Computation for Cooperative Spectrum Sensing

Nov 08, 2023
Peng Yi, Yang Cao, Xin Kang, Ying-Chang Liang

Cooperative spectrum sensing (CSS) is a promising approach to improve the detection of primary users (PUs) using multiple sensors. However, there are several challenges for existing combination methods, i.e., performance degradation and ceiling effect for hard-decision fusion (HDF), as well as significant uploading latency and non-robustness to noise in the reporting channel for soft-data fusion (SDF). To address these issues, in this paper, we propose a novel framework for CSS that integrates communication and computation, namely ICC. Specifically, distributed semantic communication (DSC) jointly optimizes multiple sensors and the fusion center to minimize the transmitted data without degrading detection performance. Moreover, over-the-air computation (AirComp) is utilized to further reduce spectrum occupation in the reporting channel, taking advantage of the characteristics of the wireless channel to enable data aggregation. Under the ICC framework, a particular system, namely ICC-CSS, is designed and implemented, which is theoretically proved to be equivalent to the optimal estimator-correlator (E-C) detector with equal gain SDF when the PU signal samples are independent and identically distributed. Extensive simulations verify the superiority of ICC-CSS compared with various conventional CSS schemes in terms of detection performance, robustness to SNR variations in both the sensing and reporting channels, as well as scalability with respect to the number of samples and sensors.

* 13 pages,11 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible 
Viaarxiv icon

Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving for Internet of Things

Nov 08, 2023
Hengliang Tang, Zihang Zhao, Detian Liu, Yang Cao, Shiqiang Zhang, Siqing You

In the realm of the Internet of Things (IoT), deploying deep learning models to process data generated or collected by IoT devices is a critical challenge. However, direct data transmission can cause network congestion and inefficient execution, given that IoT devices typically lack computation and communication capabilities. Centralized data processing in data centers is also no longer feasible due to concerns over data privacy and security. To address these challenges, we present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers to assist IoT devices in model training and optimization process. In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data, thereby enhancing data privacy protection by transmitting only model parameters. Additionally, inspired by Split Learning (SL), we split the neural network into three parts using U-shaped splitting for local training on IoT devices. By exploiting the greater computation capability of edge servers, our framework effectively reduces overall training time and allows IoT devices with varying capabilities to perform training tasks efficiently. Furthermore, we proposed a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks, eliminating the risk of privacy leakage. Our theoretical analysis and experimental results demonstrate that EUSFL can be integrated with various aggregation algorithms, maintaining good performance across different computing capabilities of IoT devices, and significantly reducing training time and local computation overhead.

Viaarxiv icon

Deep Learning-Empowered Semantic Communication Systems with a Shared Knowledge Base

Nov 06, 2023
Peng Yi, Yang Cao, Xin Kang, Ying-Chang Liang

Deep learning-empowered semantic communication is regarded as a promising candidate for future 6G networks. Although existing semantic communication systems have achieved superior performance compared to traditional methods, the end-to-end architecture adopted by most semantic communication systems is regarded as a black box, leading to the lack of explainability. To tackle this issue, in this paper, a novel semantic communication system with a shared knowledge base is proposed for text transmissions. Specifically, a textual knowledge base constructed by inherently readable sentences is introduced into our system. With the aid of the shared knowledge base, the proposed system integrates the message and corresponding knowledge from the shared knowledge base to obtain the residual information, which enables the system to transmit fewer symbols without semantic performance degradation. In order to make the proposed system more reliable, the semantic self-information and the source entropy are mathematically defined based on the knowledge base. Furthermore, the knowledge base construction algorithm is developed based on a similarity-comparison method, in which a pre-configured threshold can be leveraged to control the size of the knowledge base. Moreover, the simulation results have demonstrated that the proposed approach outperforms existing baseline methods in terms of transmitted data size and sentence similarity.

* 14 pages, Journal, accepted by IEEE TWC 
Viaarxiv icon

Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation

Oct 18, 2023
Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, Chuan Shi

Heterogeneous information network (HIN), which contains rich semantics depicted by meta-paths, has become a powerful tool to alleviate data sparsity in recommender systems. Existing HIN-based recommendations hold the data centralized storage assumption and conduct centralized model training. However, the real-world data is often stored in a distributed manner for privacy concerns, resulting in the failure of centralized HIN-based recommendations. In this paper, we suggest the HIN is partitioned into private HINs stored in the client side and shared HINs in the server. Following this setting, we propose a federated heterogeneous graph neural network (FedHGNN) based framework, which can collaboratively train a recommendation model on distributed HINs without leaking user privacy. Specifically, we first formalize the privacy definition in the light of differential privacy for HIN-based federated recommendation, which aims to protect user-item interactions of private HIN as well as user's high-order patterns from shared HINs. To recover the broken meta-path based semantics caused by distributed data storage and satisfy the proposed privacy, we elaborately design a semantic-preserving user interactions publishing method, which locally perturbs user's high-order patterns as well as related user-item interactions for publishing. After that, we propose a HGNN model for recommendation, which conducts node- and semantic-level aggregations to capture recovered semantics. Extensive experiments on three datasets demonstrate our model outperforms existing methods by a large margin (up to 34% in HR@10 and 42% in NDCG@10) under an acceptable privacy budget.

* Submit to WWW 2024 
Viaarxiv icon

CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

Oct 10, 2023
Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, Xianying Zhu

Figure 1 for CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model
Figure 2 for CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model
Figure 3 for CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model
Figure 4 for CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.

* 10 pages with 2 pages for references 
Viaarxiv icon

CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection

Oct 04, 2023
Yang Cao, Yihan Zeng, Hang Xu, Dan Xu

Figure 1 for CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Figure 2 for CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Figure 3 for CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Figure 4 for CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection

Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature. There are primarily two fundamental problems in OV-3DDet, i.e., localizing and classifying novel objects. This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories. To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects. To classify novel object boxes, we further develop a cross-modal alignment module based on discovered novel boxes, to align feature spaces between 3D point cloud and image/text modalities. Specifically, the alignment process contains a class-agnostic and a class-discriminative alignment, incorporating not only the base objects with annotations but also the increasingly discovered novel objects, resulting in an iteratively enhanced alignment. The novel box discovery and crossmodal alignment are jointly learned to collaboratively benefit each other. The novel object discovery can directly impact the cross-modal alignment, while a better feature alignment can, in turn, boost the localization capability, leading to a unified OV-3DDet framework, named CoDA, for simultaneous novel object localization and classification. Extensive experiments on two challenging datasets (i.e., SUN-RGBD and ScanNet) demonstrate the effectiveness of our method and also show a significant mAP improvement upon the best-performing alternative method by 80%. Codes and pre-trained models are released on the project page.

* Accepted by NeurIPS 2023. Project Page: https://yangcaoai.github.io/publications/CoDA.html 
Viaarxiv icon

Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation

Sep 22, 2023
Wei Zhai, Pingyu Wu, Kai Zhu, Yang Cao, Feng Wu, Zheng-Jun Zha

Figure 1 for Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
Figure 2 for Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
Figure 3 for Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
Figure 4 for Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation

Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels. Recently, a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve pixel-level localization. While existing FPM-based methods use cross-entropy to evaluate the foreground prediction map and to guide the learning of the generator, this paper presents two astonishing experimental observations on the object localization learning process: For a trained network, as the foreground mask expands, 1) the cross-entropy converges to zero when the foreground mask covers only part of the object region. 2) The activation value continuously increases until the foreground mask expands to the object boundary. Therefore, to achieve a more effective localization performance, we argue for the usage of activation value to learn more object regions. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint (AMC) module is designed to facilitate the learning of generator by suppressing the background activation value. Meanwhile, by using foreground region guidance and area constraint, BAS can learn the whole region of the object. In the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets. In addition, our method also achieves state-of-the-art weakly supervised semantic segmentation performance on the PASCAL VOC 2012 and MS COCO 2014 datasets. Code and models are available at https://github.com/wpy1999/BAS-Extension.

* Accepted by IJCV. arXiv admin note: text overlap with arXiv:2112.00580 
Viaarxiv icon

ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Aug 23, 2023
Fumiyuki Kato, Li Xiong, Shun Takagi, Yang Cao, Masatoshi Yoshikawa

Figure 1 for ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Figure 2 for ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Figure 3 for ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy
Figure 4 for ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present ULDP-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we enhance the algorithm's utility and showcase its private implementation using cryptographic building blocks. Empirical experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.

Viaarxiv icon