Abstract:Recent advancements have highlighted the potential of large language models (LLMs) in medical applications, notably in automating Clinical Trial Matching for translational research and providing medical question-answering for clinical decision support. However, our study reveals significant inequities in the use of LLMs, particularly for individuals from specific racial, gender, and underrepresented groups influenced by social determinants of health. These disparities could worsen existing health inequities if LLMs are broadly adopted in healthcare. To address this, we propose and evaluate a novel framework, EquityGuard, designed to detect and mitigate biases in LLM-based medical applications. EquityGuard incorporates a Bias Detection Mechanism capable of identifying and correcting unfair predictions, thus enhancing outcomes and promoting equity across diverse population groups.
Abstract:The success of Vision Language Models (VLMs) on various vision-language tasks heavily relies on pre-training with large scale web-crawled datasets. However, the noisy and incomplete nature of web data makes dataset scale crucial for performance, rendering end-to-end training increasingly prohibitive. In this paper, we propose NEVLP, a noise-robust framework for efficient vision-language pre-training that requires less pre-training data. Specifically, we bridge the modality gap between a frozen image encoder and a large language model with a transformer and introduce two innovative learning strategies: noise-adaptive learning and concept-enhanced learning to mitigate the impact of noise. In noise-adaptive learning, we estimate the noise probability of each image-text pair based on the transformer's memorization effect and employ noise-adaptive regularization on image-text contrastive learning to condition cross-modal alignment. In concept-enhanced learning, we enrich incomplete text by incorporating visual concepts (objects in the image) to provide prior information about existing objects for image-text matching and image-grounded text generation, thereby mitigating text incompletion. Our framework effectively utilizes noisy web data and achieves state-of-the-art performance with less pre-training data across a wide range of vision-language tasks, including image-text retrieval, image captioning, and visual question answering.
Abstract:This paper introduces a new framework for clustering in a distributed network called Distributed Clustering based on Distributional Kernel (K) or KDC that produces the final clusters based on the similarity with respect to the distributions of initial clusters, as measured by K. It is the only framework that satisfies all three of the following properties. First, KDC guarantees that the combined clustering outcome from all sites is equivalent to the clustering outcome of its centralized counterpart from the combined dataset from all sites. Second, the maximum runtime cost of any site in distributed mode is smaller than the runtime cost in centralized mode. Third, it is designed to discover clusters of arbitrary shapes, sizes and densities. To the best of our knowledge, this is the first distributed clustering framework that employs a distributional kernel. The distribution-based clustering leads directly to significantly better clustering outcomes than existing methods of distributed clustering. In addition, we introduce a new clustering algorithm called Kernel Bounded Cluster Cores, which is the best clustering algorithm applied to KDC among existing clustering algorithms. We also show that KDC is a generic framework that enables a quadratic time clustering algorithm to deal with large datasets that would otherwise be impossible.
Abstract:Streaming services have reshaped how we discover and engage with digital entertainment. Despite these advancements, effectively understanding the wide spectrum of user search queries continues to pose a significant challenge. An accurate query understanding system that can handle a variety of entities that represent different user intents is essential for delivering an enhanced user experience. We can build such a system by training a natural language understanding (NLU) model; however, obtaining high-quality labeled training data in this specialized domain is a substantial obstacle. Manual annotation is costly and impractical for capturing users' vast vocabulary variations. To address this, we introduce a novel approach that leverages large language models (LLMs) through weak supervision to automatically annotate a vast collection of user search queries. Using prompt engineering and a diverse set of LLM personas, we generate training data that matches human annotator expectations. By incorporating domain knowledge via Chain of Thought and In-Context Learning, our approach leverages the labeled data to train low-latency models optimized for real-time inference. Extensive evaluations demonstrated that our approach outperformed the baseline with an average relative gain of 113% in recall. Furthermore, our novel prompt engineering framework yields higher quality LLM-generated data to be used for weak supervision; we observed 47.60% improvement over baseline in agreement rate between LLM predictions and human annotations with respect to F1 score, weighted according to the distribution of occurrences of the search queries. Our persona selection routing mechanism further adds an additional 3.67% increase in weighted F1 score on top of our novel prompt engineering framework.
Abstract:Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2024, an unsupervised multimodal medical image registration method based on multilevel correlation balanced optimization (MCBO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the deformation field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. For preoperative medical images in different modalities, the alignment and stacking of valid information between different modalities is achieved by the maximum fusion between deformation fields. Our method focuses on the ReMIND2Reg task in Learn2Reg 2024, and to verify the generality of the method, we also tested it on the COMULIS3DCLEM task. Based on the results, our method achieved second place in the validation of both two tasks.
Abstract:In this paper, we summarize the methods and experimental results we proposed for Task 2 in the learn2reg 2024 Challenge. This task focuses on unsupervised registration of anatomical structures in brain MRI images between different patients. The difficulty lies in: (1) without segmentation labels, and (2) a large amount of data. To address these challenges, we built an efficient backbone network and explored several schemes to further enhance registration accuracy. Under the guidance of the NCC loss function and smoothness regularization loss function, we obtained a smooth and reasonable deformation field. According to the leaderboard, our method achieved a Dice coefficient of 77.34%, which is 1.4% higher than the TransMorph. Overall, we won second place on the leaderboard for Task 2.
Abstract:Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.
Abstract:Many existing learning-based deformable image registration methods impose constraints on deformation fields to ensure they are globally smooth and continuous. However, this assumption does not hold in cardiac image registration, where different anatomical regions exhibit asymmetric motions during respiration and movements due to sliding organs within the chest. Consequently, such global constraints fail to accommodate local discontinuities across organ boundaries, potentially resulting in erroneous and unrealistic displacement fields. In this paper, we address this issue with MemWarp, a learning framework that leverages a memory network to store prototypical information tailored to different anatomical regions. MemWarp is different from earlier approaches in two main aspects: firstly, by decoupling feature extraction from similarity matching in moving and fixed images, it facilitates more effective utilization of feature maps; secondly, despite its capability to preserve discontinuities, it eliminates the need for segmentation masks during model inference. In experiments on a publicly available cardiac dataset, our method achieves considerable improvements in registration accuracy and producing realistic deformations, outperforming state-of-the-art methods with a remarkable 7.1\% Dice score improvement over the runner-up semi-supervised method. Source code will be available at https://github.com/tinymilky/Mem-Warp.
Abstract:In this paper, we present the VideoLLaMA 2, a set of Video Large Language Models (Video-LLMs) designed to enhance spatial-temporal modeling and audio understanding in video and audio-oriented tasks. Building upon its predecessor, VideoLLaMA 2 incorporates a tailor-made Spatial-Temporal Convolution (STC) connector, which effectively captures the intricate spatial and temporal dynamics of video data. Additionally, we integrate an Audio Branch into the model through joint training, thereby enriching the multimodal understanding capabilities of the model by seamlessly incorporating audio cues. Comprehensive evaluations on multiple-choice video question answering (MC-VQA), open-ended video question answering (OE-VQA), and video captioning (VC) tasks demonstrate that VideoLLaMA 2 consistently achieves competitive results among open-source models and even gets close to some proprietary models on several benchmarks. Furthermore, VideoLLaMA 2 exhibits reasonable improvements in audio-only and audio-video question-answering (AQA & OE-AVQA) benchmarks over existing models. These advancements underline VideoLLaMA 2's superior performance in multimodal comprehension, setting a new standard for intelligent video analysis systems. All models are public to facilitate further research.
Abstract:In the domain of document AI, semi-structured form parsing plays a crucial role. This task leverages techniques from key information extraction (KIE), dealing with inputs that range from plain text to intricate modal data comprising images and structural layouts. The advent of pre-trained multimodal models has driven the extraction of key information from form documents in different formats such as PDFs and images. Nonetheless, the endeavor of form parsing is still encumbered by notable challenges like subpar capabilities in multi-lingual parsing and diminished recall in contexts rich in text and visuals. In this work, we introduce a simple but effective \textbf{M}ultimodal and \textbf{M}ultilingual semi-structured \textbf{FORM} \textbf{PARSER} (\textbf{XFormParser}), which is anchored on a comprehensive pre-trained language model and innovatively amalgamates semantic entity recognition (SER) and relation extraction (RE) into a unified framework, enhanced by a novel staged warm-up training approach that employs soft labels to significantly refine form parsing accuracy without amplifying inference overhead. Furthermore, we have developed a groundbreaking benchmark dataset, named InDFormBench, catering specifically to the parsing requirements of multilingual forms in various industrial contexts. Through rigorous testing on established multilingual benchmarks and InDFormBench, XFormParser has demonstrated its unparalleled efficacy, notably surpassing the state-of-the-art (SOTA) models in RE tasks within language-specific setups by achieving an F1 score improvement of up to 1.79\%. Our framework exhibits exceptionally improved performance across tasks in both multi-language and zero-shot contexts when compared to existing SOTA benchmarks. The code is publicly available at https://github.com/zhbuaa0/layoutlmft.