Finding optimal measurement operators is crucial for the performance of quantum reservoir computers (QRCs), since they employ a fixed quantum feature map. We formulate the training of both stateless (quantum extreme learning machines, QELMs) and stateful (memory dependent) QRCs in the framework of kernel ridge regression. This approach renders an optimal measurement operator that minimizes prediction error for a given reservoir and training dataset. For large qubit numbers, this method is more efficient than the conventional training of QRCs. We discuss efficiency and practical implementation strategies, including Pauli basis decomposition and operator diagonalization, to adapt the optimal observable to hardware constraints. Numerical experiments on image classification and time series prediction tasks demonstrate the effectiveness of this approach, which can also be applied to other quantum ML models.