Abstract:In long-video understanding, conventional uniform frame sampling often fails to capture key visual evidence, leading to degraded performance and increased hallucinations. To address this, recent agentic thinking-with-videos paradigms have emerged, adopting a localize-clip-answer pipeline in which the model actively identifies relevant video segments, performs dense sampling within those clips, and then produces answers. However, existing methods remain inefficient, suffer from weak localization, and adhere to rigid workflows. To solve these issues, we propose VideoTemp-o3, a unified agentic thinking-with-videos framework that jointly models video grounding and question answering. VideoTemp-o3 exhibits strong localization capability, supports on-demand clipping, and can refine inaccurate localizations. Specifically, in the supervised fine-tuning stage, we design a unified masking mechanism that encourages exploration while preventing noise. For reinforcement learning, we introduce dedicated rewards to mitigate reward hacking. Besides, from the data perspective, we develop an effective pipeline to construct high-quality long video grounded QA data, along with a corresponding benchmark for systematic evaluation across various video durations. Experimental results demonstrate that our method achieves remarkable performance on both long video understanding and grounding.
Abstract:Reward models are critical for reinforcement learning from human feedback, as they determine the alignment quality and reliability of generative models. For complex tasks such as image editing, reward models are required to capture global semantic consistency and implicit logical constraints beyond local similarity. Existing reward modeling approaches have clear limitations. Discriminative reward models align well with human preferences but struggle with complex semantics due to limited reasoning supervision. Generative reward models offer stronger semantic understanding and reasoning, but they are costly at inference time and difficult to align directly with human preferences. To this end, we propose Joint Reward Modeling (JRM), which jointly optimizes preference learning and language modeling on a shared vision-language backbone. This approach internalizes the semantic and reasoning capabilities of generative models into efficient discriminative representations, enabling fast and accurate evaluation. JRM achieves state-of-the-art results on MMRB2 and EditReward-Bench, and significantly improves stability and performance in downstream online reinforcement learning. These results show that joint training effectively bridges efficiency and semantic understanding in reward modeling.