VQ VAE


Vector-quantized variational autoencoder (VQ VAE) is a generative model that uses vector quantization to learn discrete latent representations.

Exploring Classical Piano Performance Generation with Expressive Music Variational AutoEncoder

Add code
Jul 02, 2025
Viaarxiv icon

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation

Add code
Jun 26, 2025
Viaarxiv icon

DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration

Add code
Jun 16, 2025
Viaarxiv icon

Task-Driven Discrete Representation Learning

Add code
Jun 13, 2025
Viaarxiv icon

Policy-Based Trajectory Clustering in Offline Reinforcement Learning

Add code
Jun 12, 2025
Viaarxiv icon

STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization

Add code
Jun 04, 2025
Viaarxiv icon

Generative Latent Coding for Ultra-Low Bitrate Image and Video Compression

Add code
May 22, 2025
Viaarxiv icon

VesselGPT: Autoregressive Modeling of Vascular Geometry

Add code
May 19, 2025
Viaarxiv icon

UniHM: Universal Human Motion Generation with Object Interactions in Indoor Scenes

Add code
May 19, 2025
Viaarxiv icon

Towards Foundation Models for Experimental Readout Systems Combining Discrete and Continuous Data

Add code
May 13, 2025
Viaarxiv icon