Abstract:Object pose estimation is a core means for robots to understand and interact with their environment. For this task, monocular category-level methods are attractive as they require only a single RGB camera. However, current methods rely on shape priors or CAD models of the intra-class known objects. We propose a diffusion-based monocular category-level 9D object pose generation method, MonoDiff9D. Our motivation is to leverage the probabilistic nature of diffusion models to alleviate the need for shape priors, CAD models, or depth sensors for intra-class unknown object pose estimation. We first estimate coarse depth via DINOv2 from the monocular image in a zero-shot manner and convert it into a point cloud. We then fuse the global features of the point cloud with the input image and use the fused features along with the encoded time step to condition MonoDiff9D. Finally, we design a transformer-based denoiser to recover the object pose from Gaussian noise. Extensive experiments on two popular benchmark datasets show that MonoDiff9D achieves state-of-the-art monocular category-level 9D object pose estimation accuracy without the need for shape priors or CAD models at any stage. Our code will be made public at https://github.com/CNJianLiu/MonoDiff9D.
Abstract:Despite their impressive performance, deep visual models are susceptible to transferable black-box adversarial attacks. Principally, these attacks craft perturbations in a target model-agnostic manner. However, surprisingly, we find that existing methods in this domain inadvertently take help from various priors that violate the black-box assumption such as the availability of the dataset used to train the target model, and the knowledge of the number of classes in the target model. Consequently, the literature fails to articulate the true potency of transferable black-box attacks. We provide an empirical study of these biases and propose a framework that aids in a prior-free transparent study of this paradigm. Using our framework, we analyze the role of prior knowledge of the target model data and number of classes in attack performance. We also provide several interesting insights based on our analysis, and demonstrate that priors cause overestimation in transferability scores. Finally, we extend our framework to query-based attacks. This extension inspires a novel image-blending technique to prepare data for effective surrogate model training.
Abstract:We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
Abstract:Older people are susceptible to fall due to instability in posture and deteriorating health. Immediate access to medical support can greatly reduce repercussions. Hence, there is an increasing interest in automated fall detection, often incorporated into a smart healthcare system to provide better monitoring. Existing systems focus on wearable devices which are inconvenient or video monitoring which has privacy concerns. Moreover, these systems provide a limited perspective of their generalization ability as they are tested on datasets containing few activities that have wide disparity in the action space and are easy to differentiate. Complex daily life scenarios pose much greater challenges with activities that overlap in action spaces due to similar posture or motion. To overcome these limitations, we propose a fall detection model, coined SDFA, based on human skeletons extracted from low-resolution videos. The use of skeleton data ensures privacy and low-resolution videos ensures low hardware and computational cost. Our model captures discriminative structural displacements and motion trends using unified joint and motion features projected onto a shared high dimensional space. Particularly, the use of separable convolution combined with a powerful GCN architecture provides improved performance. Extensive experiments on five large-scale datasets with a wide range of evaluation settings show that our model achieves competitive performance with extremely low computational complexity and runs faster than existing models.
Abstract:The increasing pace of population aging calls for better care and support systems. Falling is a frequent and critical problem for elderly people causing serious long-term health issues. Fall detection from video streams is not an attractive option for real-life applications due to privacy issues. Existing methods try to resolve this issue by using very low-resolution cameras or video encryption. However, privacy cannot be ensured completely with such approaches. Key points on the body, such as skeleton joints, can convey significant information about motion dynamics and successive posture changes which are crucial for fall detection. Skeleton joints have been explored for feature extraction but with image recognition models that ignore joint dependency across frames which is important for the classification of actions. Moreover, existing models are over-parameterized or evaluated on small datasets with very few activity classes. We propose an efficient graph convolution network model that exploits spatio-temporal joint dependencies and dynamics of human skeleton joints for accurate fall detection. Our method leverages dynamic representation with robust concurrent spatio-temporal characteristics of skeleton joints. We performed extensive experiments on three large-scale datasets. With a significantly smaller model size than most existing methods, our proposed method achieves state-of-the-art results on the large scale NTU datasets.
Abstract:Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
Abstract:Infrared sensing is a core method for supporting unmanned systems, such as autonomous vehicles and drones. Recently, infrared sensors have been widely deployed on mobile and stationary platforms for detection and classification of objects from long distances and in wide field of views. Given its success in the vision image analysis domain, deep learning has also been applied for object recognition in infrared images. However, techniques that have proven successful in visible light perception face new challenges in the infrared domain. These challenges include extremely low signal-to-noise ratios in infrared images, very small and blurred objects of interest, and limited availability of labeled/unlabeled training data due to the specialized nature of infrared sensors. Numerous methods have been proposed in the literature for the detection and classification of small objects in infrared images achieving varied levels of success. There is a need for a survey paper that critically analyzes existing techniques in this domain, identifies unsolved challenges and provides future research directions. This paper fills the gap and offers a concise and insightful review of deep learning-based methods. It also identifies the challenges faced by existing infrared object segmentation methods and provides a structured review of existing infrared perception methods from the perspective of these challenges and highlights the motivations behind the various approaches. Finally, this review suggests promising future directions based on recent advancements within this domain.
Abstract:Perceptual image compression has shown strong potential for producing visually appealing results at low bitrates, surpassing classical standards and pixel-wise distortion-oriented neural methods. However, existing methods typically improve compression performance by incorporating explicit semantic priors, such as segmentation maps and textual features, into the encoder or decoder, which increases model complexity by adding parameters and floating-point operations. This limits the model's practicality, as image compression often occurs on resource-limited mobile devices. To alleviate this problem, we propose a lightweight perceptual Image Compression method using Implicit Semantic Priors (ICISP). We first develop an enhanced visual state space block that exploits local and global spatial dependencies to reduce redundancy. Since different frequency information contributes unequally to compression, we develop a frequency decomposition modulation block to adaptively preserve or reduce the low-frequency and high-frequency information. We establish the above blocks as the main modules of the encoder-decoder, and to further improve the perceptual quality of the reconstructed images, we develop a semantic-informed discriminator that uses implicit semantic priors from a pretrained DINOv2 encoder. Experiments on popular benchmarks show that our method achieves competitive compression performance and has significantly fewer network parameters and floating point operations than the existing state-of-the-art.
Abstract:High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns, including intellectual property protection and the misuse of synthetic media. To address these challenges, we propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source. Our multi-stage watermarking technique involves embedding: (i) a fixed watermark that is localized in the diffusion model's learned noise distribution and, (ii) a human-imperceptible, dynamic watermark in generates images, leveraging a fine-tuned decoder. By leveraging the Structural Similarity Index Measure (SSIM) and cosine similarity, we adapt the watermark's shape and color to the generated content while maintaining robustness. We demonstrate that our method enables reliable source verification through watermark classification, even when the dynamic watermark is adjusted for content-specific variations. Source model verification is enabled through watermark classification. o support further research, we generate a dataset of watermarked images and introduce a methodology to evaluate the statistical impact of watermarking on generated content.Additionally, we rigorously test our framework against various attack scenarios, demonstrating its robustness and minimal impact on image quality. Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
Abstract:Deepfake videos are causing growing concerns among communities due to their ever-increasing realism. Naturally, automated detection of forged Deepfake videos is attracting a proportional amount of interest of researchers. Current methods for detecting forged videos mainly rely on global frame features and under-utilize the spatio-temporal inconsistencies found in the manipulated videos. Moreover, they fail to attend to manipulation-specific subtle and well-localized pattern variations along both spatial and temporal dimensions. Addressing these gaps, we propose a neural Deepfake detector that focuses on the localized manipulative signatures of the forged videos at individual frame level as well as frame sequence level. Using a ResNet backbone, it strengthens the shallow frame-level feature learning with a spatial attention mechanism. The spatial stream of the model is further helped by fusing texture enhanced shallow features with the deeper features. Simultaneously, the model processes frame sequences with a distance attention mechanism that further allows fusion of temporal attention maps with the learned features at the deeper layers. The overall model is trained to detect forged content as a classifier. We evaluate our method on two popular large data sets and achieve significant performance over the state-of-the-art methods.Moreover, our technique also provides memory and computational advantages over the competitive techniques.