The long-standing dominance of gradient-boosted decision trees for tabular data has recently been challenged by in-context learning tabular foundation models. In-context learning methods fit and predict in one forward pass without parameter updates by leveraging the training data as context for predicting on query test points. While recent tabular foundation models achieve state-of-the-art performance, their transformer architecture based on the attention mechanism has quadratic complexity regarding dataset size, which in turn increases the overhead on training and inference time, and limits the capacity of the models to handle large-scale datasets. In this work, we propose TACO, an end-to-end tabular compression model that compresses the training dataset in a latent space. We test our method on the TabArena benchmark, where our proposed method is up to 94x faster in inference time, while consuming up to 97\% less memory compared to the state-of-the-art tabular transformer architecture, all while retaining performance without significant degradation. Lastly, our method not only scales better with increased dataset sizes, but it also achieves better performance compared to other baselines.
Large language models (LLMs) are promising tools for supporting security management tasks, such as incident response planning. However, their unreliability and tendency to hallucinate remain significant challenges. In this paper, we address these challenges by introducing a principled framework for using an LLM as decision support in security management. Our framework integrates the LLM in an iterative loop where it generates candidate actions that are checked for consistency with system constraints and lookahead predictions. When consistency is low, we abstain from the generated actions and instead collect external feedback, e.g., by evaluating actions in a digital twin. This feedback is then used to refine the candidate actions through in-context learning (ICL). We prove that this design allows to control the hallucination risk by tuning the consistency threshold. Moreover, we establish a bound on the regret of ICL under certain assumptions. To evaluate our framework, we apply it to an incident response use case where the goal is to generate a response and recovery plan based on system logs. Experiments on four public datasets show that our framework reduces recovery times by up to 30% compared to frontier LLMs.
Multi-domain machine translation (MDMT) aims to build a unified model capable of translating content across diverse domains. Despite the impressive machine translation capabilities demonstrated by large language models (LLMs), domain adaptation still remains a challenge for LLMs. Existing MDMT methods such as in-context learning and parameter-efficient fine-tuning often suffer from domain shift, parameter interference and limited generalization. In this work, we propose a neuron-efficient fine-tuning framework for MDMT that identifies and updates consensus-aligned neurons within LLMs. These neurons are selected by maximizing the mutual information between neuron behavior and domain features, enabling LLMs to capture both generalizable translation patterns and domain-specific nuances. Our method then fine-tunes LLMs guided by these neurons, effectively mitigating parameter interference and domain-specific overfitting. Comprehensive experiments on three LLMs across ten German-English and Chinese-English translation domains evidence that our method consistently outperforms strong PEFT baselines on both seen and unseen domains, achieving state-of-the-art performance.
Humans excel at spatial reasoning tasks like Tangram puzzle assembly through cognitive processes involving mental rotation, iterative refinement, and visual feedback. Inspired by how humans solve Tangram puzzles through trial-and-error, observation, and correction, we design a framework that models these human cognitive mechanisms. However, comprehensive experiments across five representative Vision-Language Models (VLMs) reveal systematic failures in continuous geometric reasoning: average IoU of only 0.41 on single-piece tasks, dropping to 0.23 on two-piece composition, far below human performance where children can complete Tangram tasks successfully. This paper addresses a fundamental challenge in self-improving AI: can models iteratively refine their predictions at test time without parameter updates? We introduce a test-time self-refinement framework that combines in-context learning (ICL) with reward-guided feedback loops, inspired by human cognitive processes. Our training-free verifier-refiner agent applies recursive refinement loops that iteratively self-refine predictions based on geometric consistency feedback, achieving IoU improvements from 0.63 to 0.932 on medium-triangle cases without any model retraining. This demonstrates that incorporating human-inspired iterative refinement mechanisms through ICL and reward loops can substantially enhance geometric reasoning in VLMs, moving self-improving AI from promise to practice in continuous spatial domains. Our work is available at this anonymous link https://anonymous.4open.science/r/TangramVLM-F582/.
Reinforcement Learning has emerged as a key driver for LLM reasoning. This capability is equally pivotal in long-context scenarios--such as long-dialogue understanding and structured data analysis, where the challenge extends beyond consuming tokens to performing rigorous deduction. While existing efforts focus on data synthesis or architectural changes, recent work points out that relying solely on sparse, outcome-only rewards yields limited gains, as such coarse signals are often insufficient to effectively guide the complex long-context reasoning. To address this, we propose LongR, a unified framework that enhances long-context performance by integrating a dynamic "Think-and-Read" mechanism, which interleaves reasoning with document consultation, with a contextual density reward based on relative information gain to quantify the utility of the relevant documents. Empirically, LongR achieves a 9% gain on LongBench v2 and consistent improvements on RULER and InfiniteBench, demonstrating robust efficiency in navigating extensive contexts. Furthermore, LongR consistently enhances performance across diverse RL algorithms (e.g., DAPO, GSPO). Finally, we conduct in-depth analyses to investigate the impact of reasoning chain length on efficiency and the model's robustness against distractors.
Pre-trained vision language models do not have good intuitions about the physical world. Recent work has shown that supervised fine-tuning can improve model performance on simple physical tasks. However, fine-tuned models do not appear to learn robust physical rules that can generalize to new contexts. Based on research in cognitive science, we hypothesize that models need to interact with an environment to properly learn its physical dynamics. We train models that learn through interaction with the environment using reinforcement learning. While learning from interaction allows models to improve their within-task performance, it fails to produce models with generalizable physical intuitions. We find that models trained on one task do not reliably generalize to related tasks, even if the tasks share visual statistics and physical principles, and regardless of whether the models are trained through interaction.
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
Humanoid robots can suffer significant performance drops under small changes in dynamics, task specifications, or environment setup. We propose HoRD, a two-stage learning framework for robust humanoid control under domain shift. First, we train a high-performance teacher policy via history-conditioned reinforcement learning, where the policy infers latent dynamics context from recent state--action trajectories to adapt online to diverse randomized dynamics. Second, we perform online distillation to transfer the teacher's robust control capabilities into a transformer-based student policy that operates on sparse root-relative 3D joint keypoint trajectories. By combining history-conditioned adaptation with online distillation, HoRD enables a single policy to adapt zero-shot to unseen domains without per-domain retraining. Extensive experiments show HoRD outperforms strong baselines in robustness and transfer, especially under unseen domains and external perturbations. Code and project page are available at https://tonywang-0517.github.io/hord/.
In-context learning (ICL) enables Large Language Models (LLMs) to adapt to new tasks with only a small set of examples at inference time, thereby avoiding task-specific fine-tuning. However, in-context examples may contain privacy-sensitive information that should not be revealed through model outputs. Existing differential privacy (DP) approaches to ICL are either computationally expensive or rely on heuristics with limited effectiveness, including context oversampling, synthetic data generation, or unnecessary thresholding. We reformulate private ICL through the lens of a Product-of-Experts model. This gives a theoretically grounded framework, and the algorithm can be trivially parallelized. We evaluate our method across five datasets in text classification, math, and vision-language. We find that our method improves accuracy by more than 30 percentage points on average compared to prior DP-ICL methods, while maintaining strong privacy guarantees.
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.