Richard
Abstract:How can we generate an image B' that satisfies A:A'::B:B', given the input images A,A' and B? Recent works have tackled this challenge through approaches like visual in-context learning or visual instruction. However, these methods are typically limited to specific models (e.g. InstructPix2Pix. Inpainting models) rather than general diffusion models (e.g. Stable Diffusion, SDXL). This dependency may lead to inherited biases or lower editing capabilities. In this paper, we propose Difference Inversion, a method that isolates only the difference from A and A' and applies it to B to generate a plausible B'. To address model dependency, it is crucial to structure prompts in the form of a "Full Prompt" suitable for input to stable diffusion models, rather than using an "Instruction Prompt". To this end, we accurately extract the Difference between A and A' and combine it with the prompt of B, enabling a plug-and-play application of the difference. To extract a precise difference, we first identify it through 1) Delta Interpolation. Additionally, to ensure accurate training, we propose the 2) Token Consistency Loss and 3) Zero Initialization of Token Embeddings. Our extensive experiments demonstrate that Difference Inversion outperforms existing baselines both quantitatively and qualitatively, indicating its ability to generate more feasible B' in a model-agnostic manner.
Abstract:Despite the advances in Referring Expression Segmentation (RES) benchmarks, their evaluation protocols remain constrained, primarily focusing on either single targets with short queries (containing minimal attributes) or multiple targets from distinctly different queries on a single domain. This limitation significantly hinders the assessment of more complex reasoning capabilities in RES models. We introduce WildRES, a novel benchmark that incorporates long queries with diverse attributes and non-distinctive queries for multiple targets. This benchmark spans diverse application domains, including autonomous driving environments and robotic manipulation scenarios, thus enabling more rigorous evaluation of complex reasoning capabilities in real-world settings. Our analysis reveals that current RES models demonstrate substantial performance deterioration when evaluated on WildRES. To address this challenge, we introduce SynRES, an automated pipeline generating densely paired compositional synthetic training data through three innovations: (1) a dense caption-driven synthesis for attribute-rich image-mask-expression triplets, (2) reliable semantic alignment mechanisms rectifying caption-pseudo mask inconsistencies via Image-Text Aligned Grouping, and (3) domain-aware augmentations incorporating mosaic composition and superclass replacement to emphasize generalization ability and distinguishing attributes over object categories. Experimental results demonstrate that models trained with SynRES achieve state-of-the-art performance, improving gIoU by 2.0% on WildRES-ID and 3.8% on WildRES-DS. Code and datasets are available at https://github.com/UTLLab/SynRES.
Abstract:With the advancement of AI-based speech synthesis technologies such as Deep Voice, there is an increasing risk of voice spoofing attacks, including voice phishing and fake news, through unauthorized use of others' voices. Existing defenses that inject adversarial perturbations directly into audio signals have limited effectiveness, as these perturbations can easily be neutralized by speech enhancement methods. To overcome this limitation, we propose RoVo (Robust Voice), a novel proactive defense technique that injects adversarial perturbations into high-dimensional embedding vectors of audio signals, reconstructing them into protected speech. This approach effectively defends against speech synthesis attacks and also provides strong resistance to speech enhancement models, which represent a secondary attack threat. In extensive experiments, RoVo increased the Defense Success Rate (DSR) by over 70% compared to unprotected speech, across four state-of-the-art speech synthesis models. Specifically, RoVo achieved a DSR of 99.5% on a commercial speaker-verification API, effectively neutralizing speech synthesis attack. Moreover, RoVo's perturbations remained robust even under strong speech enhancement conditions, outperforming traditional methods. A user study confirmed that RoVo preserves both naturalness and usability of protected speech, highlighting its effectiveness in complex and evolving threat scenarios.
Abstract:A quadruped robot is a promising system that can offer assistance comparable to that of dog guides due to its similar form factor. However, various challenges remain in making these robots a reliable option for blind and low-vision (BLV) individuals. Among these challenges, noise and jerky motion during walking are critical drawbacks of existing quadruped robots. While these issues have largely been overlooked in guide dog robot research, our interviews with guide dog handlers and trainers revealed that acoustic and physical disturbances can be particularly disruptive for BLV individuals, who rely heavily on environmental sounds for navigation. To address these issues, we developed a novel walking controller for slow stepping and smooth foot swing/contact while maintaining human walking speed, as well as robust and stable balance control. The controller integrates with a perception system to facilitate locomotion over non-flat terrains, such as stairs. Our controller was extensively tested on the Unitree Go1 robot and, when compared with other control methods, demonstrated significant noise reduction -- half of the default locomotion controller. In this study, we adopt a mixed-methods approach to evaluate its usability with BLV individuals. In our indoor walking experiments, participants compared our controller to the robot's default controller. Results demonstrated superior acceptance of our controller, highlighting its potential to improve the user experience of guide dog robots. Video demonstration (best viewed with audio) available at: https://youtu.be/8-pz_8Hqe6s.
Abstract:Questioning has become increasingly crucial for both humans and artificial intelligence, yet there remains limited research comprehensively assessing question quality. In response, this study defines good questions and presents a systematic evaluation framework. We propose two key evaluation dimensions: appropriateness (sociolinguistic competence in context) and effectiveness (strategic competence in goal achievement). Based on these foundational dimensions, a rubric-based scoring system was developed. By incorporating dynamic contextual variables, our evaluation framework achieves structure and flexibility through semi-adaptive criteria. The methodology was validated using the CAUS and SQUARE datasets, demonstrating the ability of the framework to access both well-formed and problematic questions while adapting to varied contexts. As we establish a flexible and comprehensive framework for question evaluation, this study takes a significant step toward integrating questioning behavior with structured analytical methods grounded in the intrinsic nature of questioning.
Abstract:Low-quality data often suffer from insufficient image details, introducing an extra implicit aspect of camouflage that complicates camouflaged object detection (COD). Existing COD methods focus primarily on high-quality data, overlooking the challenges posed by low-quality data, which leads to significant performance degradation. Therefore, we propose KRNet, the first framework explicitly designed for COD on low-quality data. KRNet presents a Leader-Follower framework where the Leader extracts dual gold-standard distributions: conditional and hybrid, from high-quality data to drive the Follower in rectifying knowledge learned from low-quality data. The framework further benefits from a cross-consistency strategy that improves the rectification of these distributions and a time-dependent conditional encoder that enriches the distribution diversity. Extensive experiments on benchmark datasets demonstrate that KRNet outperforms state-of-the-art COD methods and super-resolution-assisted COD approaches, proving its effectiveness in tackling the challenges of low-quality data in COD.
Abstract:While 3D point clouds are widely utilized across various vision applications, their irregular and sparse nature make them challenging to handle. In response, numerous encoding approaches have been proposed to capture the rich semantic information of point clouds. Yet, a critical limitation persists: a lack of consideration for colored point clouds which are more capable 3D representations as they contain diverse attributes: color and geometry. While existing methods handle these attributes separately on a per-point basis, this leads to a limited receptive field and restricted ability to capture relationships across multiple points. To address this, we pioneer a point cloud encoding methodology that leverages 3D Fourier decomposition to disentangle color and geometric features while extending the receptive field through spectral-domain operations. Our analysis confirms that this encoding approach effectively separates feature components, where the amplitude uniquely captures color attributes and the phase encodes geometric structure, thereby enabling independent learning and utilization of both attributes. Furthermore, the spectral-domain properties of these components naturally aggregate local features while considering multiple points' information. We validate our point cloud encoding approach on point cloud classification and style transfer tasks, achieving state-of-the-art results on the DensePoint dataset with improvements via a proposed amplitude-based data augmentation strategy.
Abstract:Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics (i.e., accuracy) under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a new comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches genuinely eliminate the targeted forget data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier (i.e., the last layer), thereby achieving superior logit-based evaluation metrics while maintaining significant representational similarity to the original model. Furthermore, we introduce a novel unlearning evaluation setup from a transfer learning perspective, in which the forget set classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model. Our comprehensive benchmark not only addresses a critical gap between theoretical machine unlearning and practical scenarios, but also establishes a foundation to inspire future research directions in developing genuinely effective unlearning methodologies.
Abstract:Existing Video Scene Graph Generation (VidSGG) studies are trained in a fully supervised manner, which requires all frames in a video to be annotated, thereby incurring high annotation cost compared to Image Scene Graph Generation (ImgSGG). Although the annotation cost of VidSGG can be alleviated by adopting a weakly supervised approach commonly used for ImgSGG (WS-ImgSGG) that uses image captions, there are two key reasons that hinder such a naive adoption: 1) Temporality within video captions, i.e., unlike image captions, video captions include temporal markers (e.g., before, while, then, after) that indicate time related details, and 2) Variability in action duration, i.e., unlike human actions in image captions, human actions in video captions unfold over varying duration. To address these issues, we propose a Natural Language-based Video Scene Graph Generation (NL-VSGG) framework that only utilizes the readily available video captions for training a VidSGG model. NL-VSGG consists of two key modules: Temporality-aware Caption Segmentation (TCS) module and Action Duration Variability-aware caption-frame alignment (ADV) module. Specifically, TCS segments the video captions into multiple sentences in a temporal order based on a Large Language Model (LLM), and ADV aligns each segmented sentence with appropriate frames considering the variability in action duration. Our approach leads to a significant enhancement in performance compared to simply applying the WS-ImgSGG pipeline to VidSGG on the Action Genome dataset. As a further benefit of utilizing the video captions as weak supervision, we show that the VidSGG model trained by NL-VSGG is able to predict a broader range of action classes that are not included in the training data, which makes our framework practical in reality.
Abstract:Large Language Models (LLMs) have recently emerged as promising tools for recommendation thanks to their advanced textual understanding ability and context-awareness. Despite the current practice of training and evaluating LLM-based recommendation (LLM4Rec) models under a sequential recommendation scenario, we found that whether these models understand the sequential information inherent in users' item interaction sequences has been largely overlooked. In this paper, we first demonstrate through a series of experiments that existing LLM4Rec models do not fully capture sequential information both during training and inference. Then, we propose a simple yet effective LLM-based sequential recommender, called LLM-SRec, a method that enhances the integration of sequential information into LLMs by distilling the user representations extracted from a pre-trained CF-SRec model into LLMs. Our extensive experiments show that LLM-SRec enhances LLMs' ability to understand users' item interaction sequences, ultimately leading to improved recommendation performance. Furthermore, unlike existing LLM4Rec models that require fine-tuning of LLMs, LLM-SRec achieves state-of-the-art performance by training only a few lightweight MLPs, highlighting its practicality in real-world applications. Our code is available at https://github.com/Sein-Kim/LLM-SRec.