Abstract:Accurate and reliable aircraft landing time prediction is essential for effective resource allocation in air traffic management. However, the inherent uncertainty of aircraft trajectories and traffic flows poses significant challenges to both prediction accuracy and trustworthiness. Therefore, prediction models should not only provide point estimates of aircraft landing times but also the uncertainties associated with these predictions. Furthermore, aircraft trajectories are frequently influenced by the presence of nearby aircraft through air traffic control interventions such as radar vectoring. Consequently, landing time prediction models must account for multi-agent interactions in the airspace. In this work, we propose a probabilistic multi-agent aircraft landing time prediction framework that provides the landing times of multiple aircraft as distributions. We evaluate the proposed framework using an air traffic surveillance dataset collected from the terminal airspace of the Incheon International Airport in South Korea. The results demonstrate that the proposed model achieves higher prediction accuracy than the baselines and quantifies the associated uncertainties of its outcomes. In addition, the model uncovered underlying patterns in air traffic control through its attention scores, thereby enhancing explainability.
Abstract:Aircraft trajectory modeling plays a crucial role in Air Traffic Management (ATM) and is important for various downstream tasks, including conflict detection and landing time prediction. Dataset augmentation through the addition of synthetically generated trajectory data is necessary to develop a more robust aircraft trajectory model and ensure that the trajectory dataset is sufficient and balanced. In this work, we propose a novel framework called ATRADA for aircraft trajectory dataset augmentation. In the proposed framework, a Transformer encoder learns the underlying patterns in the original trajectory dataset and converts each data point into a context vector in the learned latent space. The converted dataset in the latent space is projected into reduced dimensions using principal component analysis (PCA), and a Gaussian mixture model (GMM) is applied to fit the probability distribution of the data points in the reduced-dimensional space. Finally, new samples are drawn from the fitted GMM, the dimension of the samples is reverted to the original dimension, and they are decoded with a Multi-Layer Perceptron (MLP). Several experiments demonstrate that the framework effectively generates new, high-quality synthetic aircraft trajectory data, which were compared to the results of several baselines.