The emergence of Large Audio-Language Models (LALMs) has advanced Speech Emotion Recognition (SER), but their size limits deployment in resource-constrained environments. While Knowledge Distillation is effective for LALM compression, existing methods remain underexplored in distilling the cross-modal projection module (Projector), and often struggle with alignment due to differences in feature dimensions. We propose PL-Distill, a KD framework that combines Projector-Level Distillation (PDist) to align audio embeddings and Logits-Level Distillation (LDist) to align output logits. PDist introduces Attention-weighted Centered Kernel Alignment, a novel approach we propose to highlight important time steps and address dimension mismatches. Meanwhile, LDist minimizes the Kullback-Leibler divergence between teacher and student logits from audio and text modalities. On IEMOCAP, RAVDESS, and SAVEE, PL-Distill compresses an 8.4B-parameter teacher to a compact 1.1B-parameter student, consistently outperforming the teacher, state-of-the-art pretrained models, and other KD baselines across all metrics.
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
Emotion recognition from human speech is a critical enabler for socially aware conversational AI. However, while most prior work frames emotion recognition as a categorical classification problem, real-world affective states are often ambiguous, overlapping, and context-dependent, posing significant challenges for both annotation and automatic modeling. Recent large-scale audio language models (ALMs) offer new opportunities for nuanced affective reasoning without explicit emotion supervision, but their capacity to handle ambiguous emotions remains underexplored. At the same time, advances in inference-time techniques such as test-time scaling (TTS) have shown promise for improving generalization and adaptability in hard NLP tasks, but their relevance to affective computing is still largely unknown. In this work, we introduce the first benchmark for ambiguous emotion recognition in speech with ALMs under test-time scaling. Our evaluation systematically compares eight state-of-the-art ALMs and five TTS strategies across three prominent speech emotion datasets. We further provide an in-depth analysis of the interaction between model capacity, TTS, and affective ambiguity, offering new insights into the computational and representational challenges of ambiguous emotion understanding. Our benchmark establishes a foundation for developing more robust, context-aware, and emotionally intelligent speech-based AI systems, and highlights key future directions for bridging the gap between model assumptions and the complexity of real-world human emotion.
Speech Emotion Recognition models typically use single categorical labels, overlooking the inherent ambiguity of human emotions. Ambiguous Emotion Recognition addresses this by representing emotions as probability distributions, but progress is limited by unreliable ground-truth distributions inferred from sparse human annotations. This paper explores whether Large Audio-Language Models (ALMs) can mitigate the annotation bottleneck by generating high-quality synthetic annotations. We introduce a framework leveraging ALMs to create Synthetic Perceptual Proxies, augmenting human annotations to improve ground-truth distribution reliability. We validate these proxies through statistical analysis of their alignment with human distributions and evaluate their impact by fine-tuning ALMs with the augmented emotion distributions. Furthermore, to address class imbalance and enable unbiased evaluation, we propose DiME-Aug, a Distribution-aware Multimodal Emotion Augmentation strategy. Experiments on IEMOCAP and MSP-Podcast show that synthetic annotations enhance emotion distribution, especially in low-ambiguity regions where annotation agreement is high. However, benefits diminish for highly ambiguous emotions with greater human disagreement. This work provides the first evidence that ALMs could address annotation scarcity in ambiguous emotion recognition, but highlights the need for more advanced prompting or generation strategies to handle highly ambiguous cases.
Humans often experience not just a single basic emotion at a time, but rather a blend of several emotions with varying salience. Despite the importance of such blended emotions, most video-based emotion recognition approaches are designed to recognize single emotions only. The few approaches that have attempted to recognize blended emotions typically cannot assess the relative salience of the emotions within a blend. This limitation largely stems from the lack of datasets containing a substantial number of blended emotion samples annotated with relative salience. To address this shortcoming, we introduce BLEMORE, a novel dataset for multimodal (video, audio) blended emotion recognition that includes information on the relative salience of each emotion within a blend. BLEMORE comprises over 3,000 clips from 58 actors, performing 6 basic emotions and 10 distinct blends, where each blend has 3 different salience configurations (50/50, 70/30, and 30/70). Using this dataset, we conduct extensive evaluations of state-of-the-art video classification approaches on two blended emotion prediction tasks: (1) predicting the presence of emotions in a given sample, and (2) predicting the relative salience of emotions in a blend. Our results show that unimodal classifiers achieve up to 29% presence accuracy and 13% salience accuracy on the validation set, while multimodal methods yield clear improvements, with ImageBind + WavLM reaching 35% presence accuracy and HiCMAE 18% salience accuracy. On the held-out test set, the best models achieve 33% presence accuracy (VideoMAEv2 + HuBERT) and 18% salience accuracy (HiCMAE). In sum, the BLEMORE dataset provides a valuable resource to advancing research on emotion recognition systems that account for the complexity and significance of blended emotion expressions.
This paper proposes a multi-agent artificial intelligence system that generates response-oriented media content in real time based on audio-derived emotional signals. Unlike conventional speech emotion recognition studies that focus primarily on classification accuracy, our approach emphasizes the transformation of inferred emotional states into safe, age-appropriate, and controllable response content through a structured pipeline of specialized AI agents. The proposed system comprises four cooperative agents: (1) an Emotion Recognition Agent with CNN-based acoustic feature extraction, (2) a Response Policy Decision Agent for mapping emotions to response modes, (3) a Content Parameter Generation Agent for producing media control parameters, and (4) a Safety Verification Agent enforcing age-appropriateness and stimulation constraints. We introduce an explicit safety verification loop that filters generated content before output, ensuring compliance with predefined rules. Experimental results on public datasets demonstrate that the system achieves 73.2% emotion recognition accuracy, 89.4% response mode consistency, and 100% safety compliance while maintaining sub-100ms inference latency suitable for on-device deployment. The modular architecture enables interpretability and extensibility, making it applicable to child-adjacent media, therapeutic applications, and emotionally responsive smart devices.
Understanding human emotions from multimodal signals poses a significant challenge in affective computing and human-robot interaction. While multimodal large language models (MLLMs) have excelled in general vision-language tasks, their capabilities in emotional reasoning remain limited. The field currently suffers from a scarcity of large-scale datasets with high-quality, descriptive emotion annotations and lacks standardized benchmarks for evaluation. Our preliminary framework, Emotion-LLaMA, pioneered instruction-tuned multimodal learning for emotion reasoning but was restricted by explicit face detectors, implicit fusion strategies, and low-quality training data with limited scale. To address these limitations, we present Emotion-LLaMAv2 and the MMEVerse benchmark, establishing an end-to-end pipeline together with a standardized evaluation setting for emotion recognition and reasoning. Emotion-LLaMAv2 introduces three key advances. First, an end-to-end multiview encoder eliminates external face detection and captures nuanced emotional cues via richer spatial and temporal multiview tokens. Second, a Conv Attention pre-fusion module is designed to enable simultaneous local and global multimodal feature interactions external to the LLM backbone. Third, a perception-to-cognition curriculum instruction tuning scheme within the LLaMA2 backbone unifies emotion recognition and free-form emotion reasoning. To support large-scale training and reproducible evaluation, MMEVerse aggregates twelve publicly available emotion datasets, including IEMOCAP, MELD, DFEW, and MAFW, into a unified multimodal instruction format. The data are re-annotated via a multi-agent pipeline involving Qwen2 Audio, Qwen2.5 VL, and GPT 4o, producing 130k training clips and 36k testing clips across 18 evaluation benchmarks.
The ambiguity of human emotions poses several challenges for machine learning models, as they often overlap and lack clear delineating boundaries. Contrastive language-audio pretraining (CLAP) has emerged as a key technique for generalisable emotion recognition. However, as conventional CLAP enforces a strict one-to-one alignment between paired audio-text samples, it overlooks intra-modal similarity and treats all non-matching pairs as equally negative. This conflicts with the fuzzy boundaries between different emotions. To address this limitation, we propose SmoothCLAP, which introduces softened targets derived from intra-modal similarity and paralinguistic features. By combining these softened targets with conventional contrastive supervision, SmoothCLAP learns embeddings that respect graded emotional relationships, while retaining the same inference pipeline as CLAP. Experiments on eight affective computing tasks across English and German demonstrate that SmoothCLAP is consistently achieving superior performance. Our results highlight that leveraging soft supervision is a promising strategy for building emotion-aware audio-text models.
Multimodal emotion understanding requires effective integration of text, audio, and visual modalities for both discrete emotion recognition and continuous sentiment analysis. We present EGMF, a unified framework combining expert-guided multimodal fusion with large language models. Our approach features three specialized expert networks--a fine-grained local expert for subtle emotional nuances, a semantic correlation expert for cross-modal relationships, and a global context expert for long-range dependencies--adaptively integrated through hierarchical dynamic gating for context-aware feature selection. Enhanced multimodal representations are integrated with LLMs via pseudo token injection and prompt-based conditioning, enabling a single generative framework to handle both classification and regression through natural language generation. We employ LoRA fine-tuning for computational efficiency. Experiments on bilingual benchmarks (MELD, CHERMA, MOSEI, SIMS-V2) demonstrate consistent improvements over state-of-the-art methods, with superior cross-lingual robustness revealing universal patterns in multimodal emotional expressions across English and Chinese. We will release the source code publicly.
With the rapid advancement of Multimodal Large Language Models (MLLMs), their potential has garnered significant attention in Chinese Classical Studies (CCS). While existing research has primarily focused on text and visual modalities, the audio corpus within this domain remains largely underexplored. To bridge this gap, we propose the Multi-task Classical Chinese Literary Genre Audio Corpus (MCGA). It encompasses a diverse range of literary genres across six tasks: Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Captioning (SEC), Spoken Question Answering (SQA), Speech Understanding (SU), and Speech Reasoning (SR). Through the evaluation of ten MLLMs, our experimental results demonstrate that current models still face substantial challenges when processed on the MCGA test set. Furthermore, we introduce an evaluation metric for SEC and a metric to measure the consistency between the speech and text capabilities of MLLMs. We release MCGA and our code to the public to facilitate the development of MLLMs with more robust multidimensional audio capabilities in CCS. MCGA Corpus: https://github.com/yxduir/MCGA