Abstract:Humans often experience not just a single basic emotion at a time, but rather a blend of several emotions with varying salience. Despite the importance of such blended emotions, most video-based emotion recognition approaches are designed to recognize single emotions only. The few approaches that have attempted to recognize blended emotions typically cannot assess the relative salience of the emotions within a blend. This limitation largely stems from the lack of datasets containing a substantial number of blended emotion samples annotated with relative salience. To address this shortcoming, we introduce BLEMORE, a novel dataset for multimodal (video, audio) blended emotion recognition that includes information on the relative salience of each emotion within a blend. BLEMORE comprises over 3,000 clips from 58 actors, performing 6 basic emotions and 10 distinct blends, where each blend has 3 different salience configurations (50/50, 70/30, and 30/70). Using this dataset, we conduct extensive evaluations of state-of-the-art video classification approaches on two blended emotion prediction tasks: (1) predicting the presence of emotions in a given sample, and (2) predicting the relative salience of emotions in a blend. Our results show that unimodal classifiers achieve up to 29% presence accuracy and 13% salience accuracy on the validation set, while multimodal methods yield clear improvements, with ImageBind + WavLM reaching 35% presence accuracy and HiCMAE 18% salience accuracy. On the held-out test set, the best models achieve 33% presence accuracy (VideoMAEv2 + HuBERT) and 18% salience accuracy (HiCMAE). In sum, the BLEMORE dataset provides a valuable resource to advancing research on emotion recognition systems that account for the complexity and significance of blended emotion expressions.
Abstract:Soft prompts have emerged as a powerful alternative to adapters in parameter-efficient fine-tuning (PEFT), enabling large language models (LLMs) to adapt to downstream tasks without architectural changes or parameter updates. While prior work has focused on stabilizing training via parameter interaction in small neural prompt encoders, their broader potential for transfer across languages remains unexplored. In this paper, we demonstrate that a prompt encoder can play a central role in improving performance on low-performing languages-those that achieve poor accuracy even under full-model fine-tuning. We introduce the Cross-Prompt Encoder (XPE), which combines a lightweight encoding architecture with multi-source training on typologically diverse languages - a design that enables the model to capture abstract and transferable patterns across languages. To complement XPE, we propose a Dual Soft Prompt mechanism that combines an encoder-based prompt with a directly trained standard soft prompt. This hybrid design proves especially effective for target languages that benefit from both broadly shared structure and language-specific alignment. Experiments on the SIB-200 benchmark reveal a consistent trade-off: XPE is most effective for low-performing languages, while hybrid variants offer broader adaptability across multilingual settings.