This study presents the design and control of a Plasma-propelled Ultra-silence Blimp (PUB), a novel aerial robot employing plasma vector propulsion for ultra-quiet flight without mechanical propellers. The system utilizes a helium-lift platform for extended endurance and a four-layer ring asymmetric capacitor to generate ionic wind thrust. The modular propulsion units allow flexible configuration to meet mission-specific requirements, while a two-degree-of-freedom (DOF) head enables thrust vector control. A closed-loop slip control scheme is implemented for stable maneuvering. Flight experiments demonstrate full-envelope capability, including take-off, climb, hover, descent, and smooth landing, confirming the feasibility of plasma vector propulsion, the effectiveness of DOF vector control, and the stability of the control system. Owing to its low acoustic signature, structural simplicity, and high maneuverability, PUB is well suited for noise-sensitive, enclosed, and near-space applications.