In this paper, we propose a method to estimate the exact location of a camera in a cyber-physical system using the exact geographic coordinates of four feature points stored in QR codes(Quick response codes) and the pixel coordinates of four feature points analyzed from the QR code images taken by the camera. Firstly, the P4P(Perspective 4 Points) algorithm is designed to uniquely determine the initial pose estimation value of the QR coordinate system relative to the camera coordinate system by using the four feature points of the selected QR code. In the second step, the manifold gradient optimization algorithm is designed. The rotation matrix and displacement vector are taken as the initial values of iteration, and the iterative optimization is carried out to improve the positioning accuracy and obtain the rotation matrix and displacement vector with higher accuracy. The third step is to convert the pose of the QR coordinate system with respect to the camera coordinate system to the pose of the AGV(Automated Guided Vehicle) with respect to the world coordinate system. Finally, the performance of manifold gradient optimization algorithm and P4P analytical algorithm are simulated and compared under the same conditions.One can see that the performance of the manifold gradient optimization algorithm proposed in this paper is much better than that of the P4P analytic algorithm when the signal-to-noise ratio is small.With the increase of the signal-to-noise ratio,the performance of the P4P analytic algorithm approaches that of the manifold gradient optimization algorithm.when the noise is same,the performance of manifold gradient optimization algorithm is better when there are more feature points.
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
Zero-shot Chinese character recognition has attracted rising attention in recent years. Existing methods for this problem are mainly based on either certain low-level stroke-based decomposition or medium-level radical-based decomposition. Considering that the stroke- and radical-level decompositions can provide different levels of information, we propose an effective zero-shot Chinese character recognition method by combining them. The proposed method consists of a training stage and an inference stage. In the training stage, we adopt two similar encoder-decoder models to yield the estimates of stroke and radical encodings, which together with the true encodings are then used to formalize the associated stroke and radical losses for training. A similarity loss is introduced to regularize stroke and radical encoders to yield features of the same characters with high correlation. In the inference stage, two key modules, i.e., the stroke screening module (SSM) and feature matching module (FMM) are introduced to tackle the deterministic and confusing cases respectively. In particular, we introduce an effective stroke rectification scheme in FMM to enlarge the candidate set of characters for final inference. Numerous experiments over three benchmark datasets covering the handwritten, printed artistic and street view scenarios are conducted to demonstrate the effectiveness of the proposed method. Numerical results show that the proposed method outperforms the state-of-the-art methods in both character and radical zero-shot settings, and maintains competitive performance in the traditional seen character setting.
Image representation is critical for many visual tasks. Instead of representing images discretely with 2D arrays of pixels, a recent study, namely local implicit image function (LIIF), denotes images as a continuous function where pixel values are expansion by using the corresponding coordinates as inputs. Due to its continuous nature, LIIF can be adopted for arbitrary-scale image super-resolution tasks, resulting in a single effective and efficient model for various up-scaling factors. However, LIIF often suffers from structural distortions and ringing artifacts around edges, mostly because all pixels share the same model, thus ignoring the local properties of the image. In this paper, we propose a novel adaptive local image function (A-LIIF) to alleviate this problem. Specifically, our A-LIIF consists of two main components: an encoder and a expansion network. The former captures cross-scale image features, while the latter models the continuous up-scaling function by a weighted combination of multiple local implicit image functions. Accordingly, our A-LIIF can reconstruct the high-frequency textures and structures more accurately. Experiments on multiple benchmark datasets verify the effectiveness of our method. Our codes are available at \url{https://github.com/LeeHW-THU/A-LIIF}.
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer, which facilitates preservation of pulmonary function and helps ensure low recurrence rates. However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning. In this paper, we investigate what makes for automatic reconstruction of pulmonary segments. First and foremost, we formulate, clinically and geometrically, the anatomical definitions of pulmonary segments, and propose evaluation metrics adhering to these definitions. Second, we propose ImPulSe (Implicit Pulmonary Segment), a deep implicit surface model designed for pulmonary segment reconstruction. The automatic reconstruction of pulmonary segments by ImPulSe is accurate in metrics and visually appealing. Compared with canonical segmentation methods, ImPulSe outputs continuous predictions of arbitrary resolutions with higher training efficiency and fewer parameters. Lastly, we experiment with different network inputs to analyze what matters in the task of pulmonary segment reconstruction. Our code is available at https://github.com/M3DV/ImPulSe.
Medical image synthesis has attracted increasing attention because it could generate missing image data, improving diagnosis and benefits many downstream tasks. However, so far the developed synthesis model is not adaptive to unseen data distribution that presents domain shift, limiting its applicability in clinical routine. This work focuses on exploring domain adaptation (DA) of 3D image-to-image synthesis models. First, we highlight the technical difference in DA between classification, segmentation and synthesis models. Second, we present a novel efficient adaptation approach based on 2D variational autoencoder which approximates 3D distributions. Third, we present empirical studies on the effect of the amount of adaptation data and the key hyper-parameters. Our results show that the proposed approach can significantly improve the synthesis accuracy on unseen domains in a 3D setting. The code is publicly available at https://github.com/WinstonHuTiger/2D_VAE_UDA_for_3D_sythesis
Human ratings are abstract representations of segmentation quality. To approximate human quality ratings on scarce expert data, we train surrogate quality estimation models. We evaluate on a complex multi-class segmentation problem, specifically glioma segmentation following the BraTS annotation protocol. The training data features quality ratings from 15 expert neuroradiologists on a scale ranging from 1 to 6 stars for various computer-generated and manual 3D annotations. Even though the networks operate on 2D images and with scarce training data, we can approximate segmentation quality within a margin of error comparable to human intra-rater reliability. Segmentation quality prediction has broad applications. While an understanding of segmentation quality is imperative for successful clinical translation of automatic segmentation quality algorithms, it can play an essential role in training new segmentation models. Due to the split-second inference times, it can be directly applied within a loss function or as a fully-automatic dataset curation mechanism in a federated learning setting.
Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score.